These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 33926997)
1. Volume of β-Bursts, But Not Their Rate, Predicts Successful Response Inhibition. Enz N; Ruddy KL; Rueda-Delgado LM; Whelan R J Neurosci; 2021 Jun; 41(23):5069-5079. PubMed ID: 33926997 [TBL] [Abstract][Full Text] [Related]
2. β-Bursts Reveal the Trial-to-Trial Dynamics of Movement Initiation and Cancellation. Wessel JR J Neurosci; 2020 Jan; 40(2):411-423. PubMed ID: 31748375 [TBL] [Abstract][Full Text] [Related]
3. Establishing a Right Frontal Beta Signature for Stopping Action in Scalp EEG: Implications for Testing Inhibitory Control in Other Task Contexts. Wagner J; Wessel JR; Ghahremani A; Aron AR J Cogn Neurosci; 2018 Jan; 30(1):107-118. PubMed ID: 28880766 [TBL] [Abstract][Full Text] [Related]
4. Temporally-precise disruption of prefrontal cortex informed by the timing of beta bursts impairs human action-stopping. Hannah R; Muralidharan V; Sundby KK; Aron AR Neuroimage; 2020 Nov; 222():117222. PubMed ID: 32768628 [TBL] [Abstract][Full Text] [Related]
5. Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. Swann N; Tandon N; Canolty R; Ellmore TM; McEvoy LK; Dreyer S; DiSano M; Aron AR J Neurosci; 2009 Oct; 29(40):12675-85. PubMed ID: 19812342 [TBL] [Abstract][Full Text] [Related]
6. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson's disease. Swann N; Poizner H; Houser M; Gould S; Greenhouse I; Cai W; Strunk J; George J; Aron AR J Neurosci; 2011 Apr; 31(15):5721-9. PubMed ID: 21490213 [TBL] [Abstract][Full Text] [Related]
8. The Cumulative Effect of Transient Synchrony States on Motor Performance in Parkinson's Disease. Tinkhauser G; Torrecillos F; Pogosyan A; Mostofi A; Bange M; Fischer P; Tan H; Hasegawa H; Glaser M; Muthuraman M; Groppa S; Ashkan K; Pereira EA; Brown P J Neurosci; 2020 Feb; 40(7):1571-1580. PubMed ID: 31919131 [TBL] [Abstract][Full Text] [Related]
9. Neurofeedback-Linked Suppression of Cortical β Bursts Speeds Up Movement Initiation in Healthy Motor Control: A Double-Blind Sham-Controlled Study. He S; Everest-Phillips C; Clouter A; Brown P; Tan H J Neurosci; 2020 May; 40(20):4021-4032. PubMed ID: 32284339 [TBL] [Abstract][Full Text] [Related]
10. Time Course of Brain Network Reconfiguration Supporting Inhibitory Control. Popov T; Westner BU; Silton RL; Sass SM; Spielberg JM; Rockstroh B; Heller W; Miller GA J Neurosci; 2018 May; 38(18):4348-4356. PubMed ID: 29636394 [TBL] [Abstract][Full Text] [Related]
11. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication. Tinkhauser G; Pogosyan A; Tan H; Herz DM; Kühn AA; Brown P Brain; 2017 Nov; 140(11):2968-2981. PubMed ID: 29053865 [TBL] [Abstract][Full Text] [Related]
12. Temporal evolution of beta bursts in the parkinsonian cortical and basal ganglia network. Cagnan H; Mallet N; Moll CKE; Gulberti A; Holt AB; Westphal M; Gerloff C; Engel AK; Hamel W; Magill PJ; Brown P; Sharott A Proc Natl Acad Sci U S A; 2019 Aug; 116(32):16095-16104. PubMed ID: 31341079 [TBL] [Abstract][Full Text] [Related]
13. Age-related trends in neuromagnetic transient beta burst characteristics during a sensorimotor task and rest in the Cam-CAN open-access dataset. Brady B; Power L; Bardouille T Neuroimage; 2020 Nov; 222():117245. PubMed ID: 32818620 [TBL] [Abstract][Full Text] [Related]
14. Random Tactile Noise Stimulation Reveals Beta-Rhythmic Impulse Response Function of the Somatosensory System. Chota S; VanRullen R; Gulbinaite R J Neurosci; 2023 Apr; 43(17):3107-3119. PubMed ID: 36931709 [TBL] [Abstract][Full Text] [Related]
15. Preventing a Thought from Coming to Mind Elicits Increased Right Frontal Beta Just as Stopping Action Does. Castiglione A; Wagner J; Anderson M; Aron AR Cereb Cortex; 2019 May; 29(5):2160-2172. PubMed ID: 30806454 [TBL] [Abstract][Full Text] [Related]
16. Alterations in the amplitude and burst rate of beta oscillations impair reward-dependent motor learning in anxiety. Sporn S; Hein T; Herrojo Ruiz M Elife; 2020 May; 9():. PubMed ID: 32423530 [TBL] [Abstract][Full Text] [Related]
17. Beta burst coupling across the motor circuit in Parkinson's disease. Tinkhauser G; Torrecillos F; Duclos Y; Tan H; Pogosyan A; Fischer P; Carron R; Welter ML; Karachi C; Vandenberghe W; Nuttin B; Witjas T; Régis J; Azulay JP; Eusebio A; Brown P Neurobiol Dis; 2018 Sep; 117():217-225. PubMed ID: 29909050 [TBL] [Abstract][Full Text] [Related]
18. Distinct β Band Oscillatory Networks Subserving Motor and Cognitive Control during Gait Adaptation. Wagner J; Makeig S; Gola M; Neuper C; Müller-Putz G J Neurosci; 2016 Feb; 36(7):2212-26. PubMed ID: 26888931 [TBL] [Abstract][Full Text] [Related]
19. Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages. Tatz JR; Soh C; Wessel JR J Neurosci; 2021 Oct; 41(42):8826-8838. PubMed ID: 34493541 [TBL] [Abstract][Full Text] [Related]
20. Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. Cai W; Ryali S; Chen T; Li CS; Menon V J Neurosci; 2014 Oct; 34(44):14652-67. PubMed ID: 25355218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]