These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33927204)

  • 1. A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface.
    Rathee D; Raza H; Roy S; Prasad G
    Sci Data; 2021 Apr; 8(1):120. PubMed ID: 33927204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing impact of channel selection on decoding of motor and cognitive imagery from MEG data.
    Roy S; Rathee D; Chowdhury A; McCreadie K; Prasad G
    J Neural Eng; 2020 Oct; 17(5):056037. PubMed ID: 32998113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Key technologies for intelligent brain-computer interaction based on magnetoencephalography].
    Xu H; Gong A; Ding P; Luo J; Chen C; Fu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):198-206. PubMed ID: 35231982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping and decoding cortical engagement during motor imagery, mental arithmetic, and silent word generation using MEG.
    Youssofzadeh V; Roy S; Chowdhury A; Izadysadr A; Parkkonen L; Raghavan M; Prasad G
    Hum Brain Mapp; 2023 Jun; 44(8):3324-3342. PubMed ID: 36987698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An MEG-based brain-computer interface (BCI).
    Mellinger J; Schalk G; Braun C; Preissl H; Rosenstiel W; Birbaumer N; Kübler A
    Neuroimage; 2007 Jul; 36(3):581-93. PubMed ID: 17475511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A magnetoencephalography dataset during three-dimensional reaching movements for brain-computer interfaces.
    Yeom HG; Kim JS; Chung CK
    Sci Data; 2023 Aug; 10(1):552. PubMed ID: 37607973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface.
    Corsi MC; Chavez M; Schwartz D; Hugueville L; Khambhati AN; Bassett DS; De Vico Fallani F
    Int J Neural Syst; 2019 Feb; 29(1):1850014. PubMed ID: 29768971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional disconnection of associative cortical areas predicts performance during BCI training.
    Corsi MC; Chavez M; Schwartz D; George N; Hugueville L; Kahn AE; Dupont S; Bassett DS; De Vico Fallani F
    Neuroimage; 2020 Apr; 209():116500. PubMed ID: 31927130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial detection of multiple movement intentions from SAM-filtered single-trial MEG signals.
    Battapady H; Lin P; Holroyd T; Hallett M; Chen X; Fei DY; Bai O
    Clin Neurophysiol; 2009 Nov; 120(11):1978-1987. PubMed ID: 19781986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetoencephalogram-based brain-computer interface for hand-gesture decoding using deep learning.
    Bu Y; Harrington DL; Lee RR; Shen Q; Angeles-Quinto A; Ji Z; Hansen H; Hernandez-Lucas J; Baumgartner J; Song T; Nichols S; Baker D; Rao R; Lerman I; Lin T; Tu XM; Huang M
    Cereb Cortex; 2023 Jul; 33(14):8942-8955. PubMed ID: 37183188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system.
    Zheng M; Yang B; Xie Y
    Med Biol Eng Comput; 2020 Jul; 58(7):1515-1528. PubMed ID: 32394192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces.
    Kaya M; Binli MK; Ozbay E; Yanar H; Mishchenko Y
    Sci Data; 2018 Oct; 5():180211. PubMed ID: 30325349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous sensorimotor rhythm based brain computer interface learning in a large population.
    Stieger JR; Engel SA; He B
    Sci Data; 2021 Apr; 8(1):98. PubMed ID: 33795705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of electroencephalogram signals using wavelet-CSP and projection extreme learning machine.
    Dai Y; Zhang X; Chen Z; Xu X
    Rev Sci Instrum; 2018 Jul; 89(7):074302. PubMed ID: 30068128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns.
    Jeunet C; N'Kaoua B; Subramanian S; Hachet M; Lotte F
    PLoS One; 2015; 10(12):e0143962. PubMed ID: 26625261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.
    Miao M; Wang A; Liu F
    Med Biol Eng Comput; 2017 Sep; 55(9):1589-1603. PubMed ID: 28161876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of public motor imagery and execution datasets in brain-computer interfaces.
    Gwon D; Won K; Song M; Nam CS; Jun SC; Ahn M
    Front Hum Neurosci; 2023; 17():1134869. PubMed ID: 37063105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding spectro-temporal representation for motor imagery recognition using ECoG-based brain-computer interfaces.
    Xu FZ; Zheng WF; Shan DR; Yuan Q; Zhou WD
    J Integr Neurosci; 2020 Jun; 19(2):259-272. PubMed ID: 32706190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.