These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33927450)

  • 21. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry.
    Mendoza A; Asrat T; Liu F; Wonnenberg P; Zestos AG
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Vitro Biofouling Performance of Boron-Doped Diamond Microelectrodes for Serotonin Detection Using Fast-Scan Cyclic Voltammetry.
    Gupta B; Perillo ML; Siegenthaler JR; Christensen IE; Welch MP; Rechenberg R; Banna GMHU; Galstyan D; Becker MF; Li W; Purcell EK
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of MOF525/PEDOT Composites as Microelectrodes for Electrochemical Sensing of Dopamine.
    Chen SS; Han PC; Kuok WK; Lu JY; Gu Y; Ahamad T; Alshehri SM; Ayalew H; Yu HH; Wu KC
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32878082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber.
    Mo JW; Ogorevc B
    Anal Chem; 2001 Mar; 73(6):1196-202. PubMed ID: 11305651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes.
    Jacobs CB; Ivanov IN; Nguyen MD; Zestos AG; Venton BJ
    Anal Chem; 2014 Jun; 86(12):5721-7. PubMed ID: 24832571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrodeposited poly(3,4-ethylenedioxythiophene) doped with graphene oxide for the simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid.
    Li D; Liu M; Zhan Y; Su Q; Zhang Y; Zhang D
    Mikrochim Acta; 2020 Jan; 187(1):94. PubMed ID: 31902014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrically Controlled Neurochemical Delivery from Microelectrodes for Focal and Transient Modulation of Cellular Behavior.
    Tan C; Kushwah N; Cui XT
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing
    Jinsmaa Y; Isonaka R; Sharabi Y; Goldstein DS
    J Pharmacol Exp Ther; 2020 Feb; 372(2):157-165. PubMed ID: 31744850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aldehyde dehydrogenase inhibition generates a reactive dopamine metabolite autotoxic to dopamine neurons.
    Doorn JA; Florang VR; Schamp JH; Vanle BC
    Parkinsonism Relat Disord; 2014 Jan; 20 Suppl 1(0 1):S73-5. PubMed ID: 24262193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voltammetric detection of Neuropeptide Y using a modified sawhorse waveform.
    Alyamni N; Abot JL; Zestos AG
    Anal Bioanal Chem; 2024 Jun; ():. PubMed ID: 38914733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine.
    Pananon P; Sriprachuabwong C; Wisitsoraat A; Chuysinuan P; Tuantranont A; Saparpakorn P; Dechtrirat D
    RSC Adv; 2018 Apr; 8(23):12724-12732. PubMed ID: 35541276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition and covalent modification of tyrosine hydroxylase by 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite.
    Mexas LM; Florang VR; Doorn JA
    Neurotoxicology; 2011 Aug; 32(4):471-7. PubMed ID: 21514317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release.
    Castagnola E; Carli S; Vomero M; Scarpellini A; Prato M; Goshi N; Fadiga L; Kassegne S; Ricci D
    Biointerphases; 2017 Jul; 12(3):031002. PubMed ID: 28704999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Printed Combinatorial Sensors for Simultaneous Detection of Ascorbic Acid, Uric Acid, Dopamine, and Nitrite.
    Su CH; Sun CL; Liao YC
    ACS Omega; 2017 Aug; 2(8):4245-4252. PubMed ID: 30023719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro and in vivo evaluation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)/dopamine-coated electrodes for dopamine delivery.
    Sui L; Song XJ; Ren J; Cai WJ; Ju LH; Wang Y; Wang LY; Chen M
    J Biomed Mater Res A; 2014 Jun; 102(6):1681-96. PubMed ID: 23776160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modified Sawhorse Waveform for the Voltammetric Detection of Oxytocin.
    Liu FA; Ardabili N; Brown I; Rafi H; Cook C; Nikopoulou R; Lopez A; Zou S; Hartings MR; Zestos AG
    J Electrochem Soc; 2022 Jan; 169():. PubMed ID: 35185166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toxicity of a treatment associating dopamine and disulfiram for catecholaminergic neuroblastoma SH-SY5Y cells: relationships with 3,4-dihydroxyphenylacetaldehyde formation.
    Legros H; Dingeval MG; Janin F; Costentin J; Bonnet JJ
    Neurotoxicology; 2004 Mar; 25(3):365-75. PubMed ID: 15019299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation.
    Oh JW; Yoon YW; Heo J; Yu J; Kim H; Kim TH
    Talanta; 2016 Jan; 147():453-9. PubMed ID: 26592632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanopipette electrodes for dopamine detection in Drosophila.
    Rees HR; Anderson SE; Privman E; Bau HH; Venton BJ
    Anal Chem; 2015 Apr; 87(7):3849-55. PubMed ID: 25711512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.