These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 33927589)
1. A Real-Time Stability Control Method Through sEMG Interface for Lower Extremity Rehabilitation Exoskeletons. Wang C; Guo Z; Duan S; He B; Yuan Y; Wu X Front Neurosci; 2021; 15():645374. PubMed ID: 33927589 [TBL] [Abstract][Full Text] [Related]
2. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton. Guo Z; Wang C; Song C PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239 [TBL] [Abstract][Full Text] [Related]
3. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation. Liu J; He Y; Li F; Cao W; Wu X Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995 [TBL] [Abstract][Full Text] [Related]
4. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment. Wang Y; Liu Z; Feng Z Clin Biomech (Bristol); 2022 May; 95():105660. PubMed ID: 35561659 [TBL] [Abstract][Full Text] [Related]
5. The Effect of Crutch Gait Pattern on Shoulder Reaction Force when Walking with Lower Limb Exoskeletons. Chen X; Cheng X; Fong J; Oetomo D; Tan Y Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7574-7577. PubMed ID: 34892843 [TBL] [Abstract][Full Text] [Related]
6. Development of an individualized stable and force-reducing lower-limb exoskeleton. Huang GS; Yen MH; Chang CC; Lai CL; Chen CC Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39212326 [TBL] [Abstract][Full Text] [Related]
7. Channel Synergy-based Human-Robot Interface for a Lower Limb Walking Assistance Exoskeleton. Shi K; Huang R; Mu F; Peng Z; Yin J; Cheng H Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1076-1081. PubMed ID: 34891474 [TBL] [Abstract][Full Text] [Related]
8. A Novel sEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction With Exoskeletons. Wei B; Ding Z; Yi C; Guo H; Wang Z; Zhu J; Jiang F Front Neurorobot; 2021; 15():704226. PubMed ID: 34447302 [TBL] [Abstract][Full Text] [Related]
9. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton. Wang W; He Y; Li F; Li J; Liu J; Wu X Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239 [TBL] [Abstract][Full Text] [Related]
10. Human-in-the-Loop Trajectory Optimization Based on sEMG Biofeedback for Lower-Limb Exoskeleton. Li LL; Zhang YP; Cao GZ; Li WZ Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275595 [TBL] [Abstract][Full Text] [Related]
11. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton. Xiao F ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342 [TBL] [Abstract][Full Text] [Related]
12. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition. Su D; Hu Z; Wu J; Shang P; Luo Z Front Neurorobot; 2023; 17():1186175. PubMed ID: 37465413 [TBL] [Abstract][Full Text] [Related]
13. Musculoskeletal modeling and humanoid control of robots based on human gait data. Yu J; Zhang S; Wang A; Li W; Song L PeerJ Comput Sci; 2021; 7():e657. PubMed ID: 34458572 [TBL] [Abstract][Full Text] [Related]
14. Real-Time Evaluation of the Signal Processing of sEMG Used in Limb Exoskeleton Rehabilitation System. Gao B; Wei C; Ma H; Yang S; Ma X; Zhang S Appl Bionics Biomech; 2018; 2018():1391032. PubMed ID: 30405746 [TBL] [Abstract][Full Text] [Related]
15. A Multi-Information Fusion Method for Gait Phase Classification in Lower Limb Rehabilitation Exoskeleton. Zhang Y; Cao G; Ling Z; Li W; Cheng H; He B; Cao S; Zhu A Front Neurorobot; 2021; 15():692539. PubMed ID: 34795571 [TBL] [Abstract][Full Text] [Related]
16. Active Human-Following Control of an Exoskeleton Robot With Body Weight Support. Li G; Li Z; Su CY; Xu T IEEE Trans Cybern; 2023 Nov; 53(11):7367-7379. PubMed ID: 37030717 [TBL] [Abstract][Full Text] [Related]
17. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration. Siu HC; Arenas AM; Sun T; Stirling LA Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754 [TBL] [Abstract][Full Text] [Related]
18. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control. Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088 [TBL] [Abstract][Full Text] [Related]
19. Flexible lower limb exoskeleton systems: A review. Meng Q; Zeng Q; Xie Q; Fei C; Kong B; Lu X; Wang H; Yu H NeuroRehabilitation; 2022; 50(4):367-390. PubMed ID: 35147568 [TBL] [Abstract][Full Text] [Related]
20. The Impact of Load Style Variation on Gait Recognition Based on sEMG Images Using a Convolutional Neural Network. Zhang X; Hu Y; Luo R; Li C; Tang Z Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]