These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33927746)

  • 1. Deep Learning Enables Fast and Accurate Imputation of Gene Expression.
    Viñas R; Azevedo T; Gamazon ER; Liò P
    Front Genet; 2021; 12():624128. PubMed ID: 33927746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative adversarial networks for imputing missing data for big data clinical research.
    Dong W; Fong DYT; Yoon JS; Wan EYF; Bedford LE; Tang EHM; Lam CLK
    BMC Med Res Methodol; 2021 Apr; 21(1):78. PubMed ID: 33879090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel missing data imputation approach based on clinical conditional Generative Adversarial Networks applied to EHR datasets.
    Bernardini M; Doinychko A; Romeo L; Frontoni E; Amini MR
    Comput Biol Med; 2023 Sep; 163():107188. PubMed ID: 37393785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DISC: a highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning.
    He Y; Yuan H; Wu C; Xie Z
    Genome Biol; 2020 Jul; 21(1):170. PubMed ID: 32650816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imputing Gene Expression in Uncollected Tissues Within and Beyond GTEx.
    Wang J; Gamazon ER; Pierce BL; Stranger BE; Im HK; Gibbons RD; Cox NJ; Nicolae DL; Chen LS
    Am J Hum Genet; 2016 Apr; 98(4):697-708. PubMed ID: 27040689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meta-imputation of transcriptome from genotypes across multiple datasets by leveraging publicly available summary-level data.
    Liu AE; Kang HM
    PLoS Genet; 2022 Jan; 18(1):e1009571. PubMed ID: 35100255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming L1000 profiles to RNA-seq-like profiles with deep learning.
    Jeon M; Xie Z; Evangelista JE; Wojciechowicz ML; Clarke DJB; Ma'ayan A
    BMC Bioinformatics; 2022 Sep; 23(1):374. PubMed ID: 36100892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate and interpretable gene expression imputation on scRNA-seq data using IGSimpute.
    Xu K; Cheong C; Veldsman WP; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37039664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Methods for Omics Data Imputation.
    Huang L; Song M; Shen H; Hong H; Gong P; Deng HW; Zhang C
    Biology (Basel); 2023 Oct; 12(10):. PubMed ID: 37887023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Missing Value Estimation using Clustering and Deep Learning within Multiple Imputation Framework.
    Samad MD; Abrar S; Diawara N
    Knowl Based Syst; 2022 Aug; 249():. PubMed ID: 36159738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PC-GAIN: Pseudo-label conditional generative adversarial imputation networks for incomplete data.
    Wang Y; Li D; Li X; Yang M
    Neural Netw; 2021 Sep; 141():395-403. PubMed ID: 34139636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scMTD: a statistical multidimensional imputation method for single-cell RNA-seq data leveraging transcriptome dynamic information.
    Qi J; Sheng Q; Zhou Y; Hua J; Xiao S; Jin S
    Cell Biosci; 2022 Sep; 12(1):142. PubMed ID: 36056412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long non-coding RNA transcriptome of uncharacterized samples can be accurately imputed using protein-coding genes.
    Nath A; Geeleher P; Huang RS
    Brief Bioinform; 2020 Mar; 21(2):637-648. PubMed ID: 30657858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning.
    Li X; Li S; Huang L; Zhang S; Wong KC
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion.
    Li Z; Song T; Yong J; Kuang R
    PLoS Comput Biol; 2021 Apr; 17(4):e1008218. PubMed ID: 33826608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypergraph factorization for multi-tissue gene expression imputation.
    Viñas R; Joshi CK; Georgiev D; Lin P; Dumitrascu B; Gamazon ER; Liò P
    Nat Mach Intell; 2023 Jul; 5(7):739-753. PubMed ID: 37771758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selecting precise reference normal tissue samples for cancer research using a deep learning approach.
    Zeng WZD; Glicksberg BS; Li Y; Chen B
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):21. PubMed ID: 30704474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis.
    Zhu M; Lai Y
    J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.