BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33927771)

  • 1. Assessing the Filariasis Causing Parasites in Adult Mosquitoes and the Vector Mosquito Larval Breeding in Selected Medical Officer of Health Areas in Gampaha District, Sri Lanka.
    Pilagolla SAS; Amarasinghe LD
    J Trop Med; 2021; 2021():6643226. PubMed ID: 33927771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Characterization of Culturable Aerobic Bacteria in the Midgut of Field-Caught
    Gunathilaka N; Ranasinghe K; Amarasinghe D; Rodrigo W; Mallawarachchi H; Chandrasena N
    Biomed Res Int; 2020; 2020():8732473. PubMed ID: 33083488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA barcoding of morphologically characterized mosquitoes belonging to the subfamily Culicinae from Sri Lanka.
    Weeraratne TC; Surendran SN; Parakrama Karunaratne SHP
    Parasit Vectors; 2018 Apr; 11(1):266. PubMed ID: 29695263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bionomic aspects of dengue vectors Aedes aegypti and Aedes albopictus at domestic settings in urban, suburban and rural areas in Gampaha District, Western Province of Sri Lanka.
    Dalpadado R; Amarasinghe D; Gunathilaka N; Ariyarathna N
    Parasit Vectors; 2022 Apr; 15(1):148. PubMed ID: 35477476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevalence of disease vectors in Lakshadweep Islands during post-monsoon season.
    Krishnan J; Mathiarasan L
    J Vector Borne Dis; 2018; 55(3):189-196. PubMed ID: 30618444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and phylogeny of Wolbachia strains in wild mosquito populations in Sri Lanka.
    Nugapola NWNP; De Silva WAPP; Karunaratne SHPP
    Parasit Vectors; 2017 May; 10(1):230. PubMed ID: 28490339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naturally Occurring Microbiota Associated with Mosquito Breeding Habitats and Potential Parasitic Species against Mosquito Larvae: A Study from Gampaha District, Sri Lanka.
    Ranasinghe HAK; Amarasinghe LD
    Biomed Res Int; 2020; 2020():4602084. PubMed ID: 32420344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on vector mosquito of zoonotic
    Mulyaningsih B; Umniyati SR; Hadisusanto S; Edyansyah E
    Vet World; 2019 Nov; 12(11):1729-1734. PubMed ID: 32009751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water quality characteristics of breeding habitats in relation to the density of Aedes aegypti and Aedes albopictus in domestic settings in Gampaha district of Sri Lanka.
    Dalpadado R; Amarasinghe D; Gunathilaka N
    Acta Trop; 2022 May; 229():106339. PubMed ID: 35114170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodiversity of mosquitoes and
    Ridha MR; Rahayu N; Hairani B; Perwitasari D; Kusumaningtyas H
    Vet World; 2020 Dec; 13(12):2815-2821. PubMed ID: 33488003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abandoned boats contribute to spread of
    Dissanayake DS; Wijekoon CD; Wegiriya H
    J Vector Borne Dis; 2022; 59(3):285-292. PubMed ID: 36511046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The incrimination of Aedes (stegomyia) aegypti as the vector of Dirofilaria repens in Nigeria.
    Anyanwu IN; Agbede RI; Ajanusi OJ; Umoh JU; Ibrahim ND
    Vet Parasitol; 2000 Oct; 92(4):319-27. PubMed ID: 10996744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical characteristics of habitats in relation to the density of container-breeding mosquitoes in Asom, India.
    Gopalakrishnan R; Das M; Baruah I; Veer V; Dutta P
    J Vector Borne Dis; 2013 Sep; 50(3):215-9. PubMed ID: 24220081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breeding site selection and co-existing patterns of tropical mosquitoes.
    Chathuranga WGD; Weeraratne TC; Abeysundara SP; Karunaratne SHPP; de Silva WAPP
    Med Vet Entomol; 2023 Sep; 37(3):550-561. PubMed ID: 37060294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Susceptibility of mosquitoes in central Taiwan to natural infections of Dirofilaria immitis.
    Lai CH; Tung KC; Ooi HK; Wang JS
    Med Vet Entomol; 2001 Mar; 15(1):64-7. PubMed ID: 11297103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study on the larvicidal effect of some ciliated protists on Culex gelidus, Culex tritaeniorhynchus, and Aedes aegypti in Sri Lanka.
    Wijesinghe S; Amarasinghe D
    Parasitol Res; 2023 Feb; 122(2):497-507. PubMed ID: 36478208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of PCR-ELISA as a tool for monitoring transmission of Wuchereria bancrofti in District of Gampaha, Sri Lanka.
    Wijegunawardana AD; Gunawardane NS; Hapuarachchi C; Manamperi A; Gunawardena K; Abeyewickrama W; Latif B
    Asian Pac J Trop Biomed; 2013 May; 3(5):381-7. PubMed ID: 23646302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of lymphatic filarial parasite Wuchereria bancrofti (Spirurida: Onchocercidae) in mosquito species (Diptera: Culicidae) fed artificially on microfilaremic blood.
    Paily KP; Hoti SL; Balaraman K
    J Med Entomol; 2006 Nov; 43(6):1222-6. PubMed ID: 17162957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Susceptibility of various mosquitoes of Thailand to nocturnal subperiodic Wuchereria bancrofti.
    Pothikasikorn J; Bangs MJ; Boonplueang R; Chareonviriyaphap T
    J Vector Ecol; 2008 Dec; 33(2):313-20. PubMed ID: 19263851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Susceptibility of ten species of mosquito larvae to the parasitic nematode Romanomermis iyengari and its development.
    Paily KP; Balaraman K
    Med Vet Entomol; 2000 Dec; 14(4):426-9. PubMed ID: 11129707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.