These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33927992)

  • 21. Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel.
    Penkhrue W; Jendrossek D; Khanongnuch C; Pathom-Aree W; Aizawa T; Behrens RL; Lumyong S
    PLoS One; 2020; 15(3):e0230443. PubMed ID: 32191752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening of the strictly xylose-utilizing Bacillus sp. SM01 for polyhydroxybutyrate and its co-culture with Cupriavidus necator NCIMB 11599 for enhanced production of PHB.
    Lee SM; Lee HJ; Kim SH; Suh MJ; Cho JY; Ham S; Jeon JM; Yoon JJ; Bhatia SK; Gurav R; Lee EY; Yang YH
    Int J Biol Macromol; 2021 Jun; 181():410-417. PubMed ID: 33775761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly(3-hydroxybutyrate) production from glycerol.
    Ibrahim MH; Steinbüchel A
    J Appl Microbiol; 2010 Jan; 108(1):214-25. PubMed ID: 19566718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of a thermophilic Bacillus shackletonii K5 from a biotrickling filter for the production of polyhydroxybutyrate.
    Liu Y; Huang S; Zhang Y; Xu F
    J Environ Sci (China); 2014 Jul; 26(7):1453-62. PubMed ID: 25079994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel
    Aragosa A; Saccomanno B; Specchia V; Frigione M
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Valorization of Waste from Argan Seeds for Polyhydroxybutyrate Production Using Bacterial Strains Isolated from Argan Soils.
    Aragosa A; Specchia V; Frigione M
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of multiple enzymes production by fermentation using lipid-producing
    Shrestha S; Chio C; Khatiwada JR; Kognou ALM; Qin W
    Front Microbiol; 2022; 13():1049692. PubMed ID: 36386650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finding of novel lactate utilizing Bacillus sp. YHY22 and its evaluation for polyhydroxybutyrate (PHB) production.
    Lee HJ; Kim SG; Cho DH; Bhatia SK; Gurav R; Yang SY; Yang J; Jeon JM; Yoon JJ; Choi KY; Yang YH
    Int J Biol Macromol; 2022 Mar; 201():653-661. PubMed ID: 35038470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste.
    Kumar T; Singh M; Purohit HJ; Kalia VC
    J Appl Microbiol; 2009 Jun; 106(6):2017-23. PubMed ID: 19226393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioplastic Production by
    Danial AW; Hamdy SM; Alrumman SA; Gad El-Rab SMF; Shoreit AAM; Hesham AE
    Microorganisms; 2021 Nov; 9(11):. PubMed ID: 34835520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3.
    Pandian SR; Deepak V; Kalishwaralal K; Rameshkumar N; Jeyaraj M; Gurunathan S
    Bioresour Technol; 2010 Jan; 101(2):705-11. PubMed ID: 19744854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A statistical approach for optimization of polyhydroxybutyrate production by marine Bacillus subtilis MSBN17.
    Sathiyanarayanan G; Saibaba G; Seghal Kiran G; Selvin J
    Int J Biol Macromol; 2013 Aug; 59():170-7. PubMed ID: 23603079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial production of polyhydroxyalkanoates by bacteria isolated from oil wastes.
    Wong AL; Chua H; Yu PH
    Appl Biochem Biotechnol; 2000; 84-86():843-57. PubMed ID: 10849842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-stage fermentation optimization for poly-3-hydroxybutyrate production from methanol by a new Methylobacterium isolate from oil fields.
    Wang J; Tan H; Li K; Yin H
    J Appl Microbiol; 2020 Jan; 128(1):171-181. PubMed ID: 31559676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of Agave durangensis leaves by Bacillus cereus 4N for polyhydroxybutyrate (PHB) biosynthesis.
    Martínez-Herrera RE; Alemán-Huerta ME; Flores-Rodríguez P; Almaguer-Cantú V; Valencia-Vázquez R; Rosas-Flores W; Medrano-Roldán H; Ochoa-Martínez LA; Rutiaga-Quiñones OM
    Int J Biol Macromol; 2021 Apr; 175():199-208. PubMed ID: 33548315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp.
    Saxena R; Singh R
    Braz J Microbiol; 2011 Oct; 42(4):1334-42. PubMed ID: 24031761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly-(γ-glutamic acid) Production and Optimization from Agro-Industrial Bioresources as Renewable Substrates by
    Song DY; Reddy LV; Charalampopoulos D; Wee YJ
    Biomolecules; 2019 Nov; 9(12):. PubMed ID: 31756993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct production of polyhydroxybutyrate from waste starch by newly-isolated
    Bomrungnok W; Arai T; Yoshihashi T; Sudesh K; Hatta T; Kosugi A
    Environ Technol; 2020 Nov; 41(25):3318-3328. PubMed ID: 30987543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Process optimization and production of polyhydroxybutyrate using palm jaggery as economical carbon source by marine sponge-associated Bacillus licheniformis MSBN12.
    Sathiyanarayanan G; Saibaba G; Seghal Kiran G; Selvin J
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1817-27. PubMed ID: 23670633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1.
    Van-Thuoc D; Quillaguamán J; Mamo G; Mattiasson B
    J Appl Microbiol; 2008 Feb; 104(2):420-8. PubMed ID: 17887984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.