BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33928002)

  • 1. Biodegradation of C20 carbon clusters from Diesel Fuel by
    Daâssi D; Nasraoui-Hajaji A; Bawasir S; Frikha F; Mechichi T
    3 Biotech; 2021 May; 11(5):214. PubMed ID: 33928002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal Bioremediation of the β-Lactam Antibiotic Ampicillin under Laccase-Induced Conditions.
    Ghariani B; Alessa AH; Ben Atitallah I; Louati I; Alsaigh AA; Mechichi T; Zouari-Mechichi H
    Antibiotics (Basel); 2024 Apr; 13(5):. PubMed ID: 38786136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotreatment of tannin-rich beer-factory wastewater with white-rot basidiomycete Coriolopsis gallica monitored by pyrolysis/gas chromatography/mass spectrometry.
    Yagüe S; Terrón MC; González T; Zapico E; Bocchini P; Galletti GC; González AE
    Rapid Commun Mass Spectrom; 2000; 14(10):905-10. PubMed ID: 10825255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Peculiarities of Lignin-Modifying Enzyme Production by the White-Rot Basidiomycete Coriolopsis gallica Strain BCC 142.
    Elisashvili V; Kachlishvili E; Asatiani MD; Darlington R; Kucharzyk KH
    Microorganisms; 2017 Nov; 5(4):. PubMed ID: 29149086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tannic acid induces transcription of laccase gene cglcc1 in the white-rot fungus Coriolopsis gallica.
    Carbajo JM; Junca H; Terrón MC; González T; Yagüe S; Zapico E; González AE
    Can J Microbiol; 2002 Dec; 48(12):1041-7. PubMed ID: 12619815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High yield production in seven days of Coriolopsis gallica 1184 laccase at 50 L scale; enzyme purification and molecular characterization.
    Songulashvili G; Flahaut S; Demarez M; Tricot C; Bauvois C; Debaste F; Penninckx MJ
    Fungal Biol; 2016 Apr; 120(4):481-488. PubMed ID: 27020150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green production of a yellow laccase by Coriolopsis gallica for phenolic pollutants removal.
    Cen Q; Wu X; Cao L; Lu Y; Lu X; Chen J; Fu G; Liu Y; Ruan R
    AMB Express; 2022 Jul; 12(1):96. PubMed ID: 35841420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of the Fluoroquinolone, Levofloxacin, by the White-Rot Fungus
    Ben Ayed A; Akrout I; Albert Q; Greff S; Simmler C; Armengaud J; Kielbasa M; Turbé-Doan A; Chaduli D; Navarro D; Bertrand E; Faulds CB; Chamkha M; Maalej A; Zouari-Mechichi H; Sciara G; Mechichi T; Record E
    J Fungi (Basel); 2022 Sep; 8(9):. PubMed ID: 36135690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of laccase transcriptome during biodegradation of naphthalene by white rot fungus Pleurotus ostreatus.
    Elhusseiny SM; Amin HM; Shebl RI
    Int Microbiol; 2019 Jun; 22(2):217-225. PubMed ID: 30810987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase.
    Pickard MA; Roman R; Tinoco R; Vazquez-Duhalt R
    Appl Environ Microbiol; 1999 Sep; 65(9):3805-9. PubMed ID: 10473379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Phanerochaete chrysosporium on diesel fuel hydrocarbons at neutral pH.
    Kanaly RA; Hur HG
    Chemosphere; 2006 Apr; 63(2):202-11. PubMed ID: 16226785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of High Laccase-Producing Coriolopsis gallica Strain T906: Mutation Breeding, Strain Characterization, and Features of the Extracellular Laccases.
    Xu X; Feng L; Han Z; Luo S; Wu A; Xie J
    J Microbiol Biotechnol; 2016 Sep; 26(9):1570-8. PubMed ID: 27291680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of the aromatic fraction from petroleum diesel fuel by Oerskovia sp. followed by comprehensive GC×GC-TOF MS.
    Lješević M; Gojgić-Cvijović G; Ieda T; Hashimoto S; Nakano T; Bulatović S; Ilić M; Beškoski V
    J Hazard Mater; 2019 Feb; 363():227-232. PubMed ID: 30308361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Taguchi design for optimization of diesel-oil biodegradation using consortium of
    Nkem BM; Halimoon N; Yusoff FM; Johari WLW
    J Environ Health Sci Eng; 2022 Dec; 20(2):729-747. PubMed ID: 36406595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of phytotoxicity and genotoxicity of soil contaminated with biodiesel, diesel fuel and petroleum.
    Cruz JM; Corroqué NA; Montagnoli RN; Lopes PRM; Morales MAM; Bidoia ED
    Ecotoxicology; 2019 May; 28(4):449-456. PubMed ID: 30953255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil.
    Palanisamy N; Ramya J; Kumar S; Vasanthi N; Chandran P; Khan S
    J Environ Health Sci Eng; 2014; 12(1):142. PubMed ID: 25530870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831.
    Lee EH; Kim J; Cho KS; Ahn YG; Hwang GS
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):64-77. PubMed ID: 19756804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of de novo sequencing and transcriptome assembly and lignocellulolytic enzymes gene expression of Coriolopsis gallica HTC.
    Chen Y; Cao Q; Tao X; Shao H; Zhang K; Zhang Y; Tan X
    Biosci Biotechnol Biochem; 2017 Mar; 81(3):460-468. PubMed ID: 27875934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of diesel fuel contamination on
    Dib D; Sadoudi Ali Ahmed D
    Int J Phytoremediation; 2020; 22(3):236-240. PubMed ID: 31997662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sawdust waste as a low-cost support-substrate for laccases production and adsorbent for azo dyes decolorization.
    Daâssi D; Zouari-Mechichi H; Frikha F; Rodríguez-Couto S; Nasri M; Mechichi T
    J Environ Health Sci Eng; 2016; 14():1. PubMed ID: 26793314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.