BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33928059)

  • 1. Development and Technical Validation of a Smartphone-Based Cry Detection Algorithm.
    ZhuParris A; Kruizinga MD; van Gent M; Dessing E; Exadaktylos V; Doll RJ; Stuurman FE; Driessen GA; Cohen AF
    Front Pediatr; 2021; 9():651356. PubMed ID: 33928059
    [No Abstract]   [Full Text] [Related]  

  • 2. Development and technical validation of a smartphone-based pediatric cough detection algorithm.
    Kruizinga MD; Zhuparris A; Dessing E; Krol FJ; Sprij AJ; Doll RJ; Stuurman FE; Exadaktylos V; Driessen GJA; Cohen AF
    Pediatr Pulmonol; 2022 Mar; 57(3):761-767. PubMed ID: 34964557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Sleep Stages Via Deep Learning Using Smartphone Audio Recordings in Home Environments: Model Development and Validation.
    Tran HH; Hong JK; Jang H; Jung J; Kim J; Hong J; Lee M; Kim JW; Kushida CA; Lee D; Kim D; Yoon IY
    J Med Internet Res; 2023 Jun; 25():e46216. PubMed ID: 37261889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Scene Adaption Framework for Infant Cry Detection in Obstetrics.
    Huang D; Ren L; Lu H; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheeze Recognition Algorithm for Remote Medical Care Device in Children: Validation Study.
    Habukawa C; Ohgami N; Arai T; Makata H; Tomikawa M; Fujino T; Manabe T; Ogihara Y; Ohtani K; Shirao K; Sugai K; Asai K; Sato T; Murakami K
    JMIR Pediatr Parent; 2021 Jun; 4(2):e28865. PubMed ID: 33875413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of expiratory and inspiratory sounds in baby cry audio recordings using hidden Markov models.
    Aucouturier JJ; Nonaka Y; Katahira K; Okanoya K
    J Acoust Soc Am; 2011 Nov; 130(5):2969-77. PubMed ID: 22087925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What Does Social Support Sound Like? Challenges and Opportunities for Using Passive Episodic Audio Collection to Assess the Social Environment.
    Poudyal A; van Heerden A; Hagaman A; Islam C; Thapa A; Maharjan SM; Byanjankar P; Kohrt BA
    Front Public Health; 2021; 9():633606. PubMed ID: 33855008
    [No Abstract]   [Full Text] [Related]  

  • 8. End-to-End Sleep Staging Using Nocturnal Sounds from Microphone Chips for Mobile Devices.
    Hong J; Tran HH; Jung J; Jang H; Lee D; Yoon IY; Hong JK; Kim JW
    Nat Sci Sleep; 2022; 14():1187-1201. PubMed ID: 35783665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validating a model to detect infant crying from naturalistic audio.
    Micheletti M; Yao X; Johnson M; de Barbaro K
    Behav Res Methods; 2023 Sep; 55(6):3187-3197. PubMed ID: 36085547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of Premature Newborns' Spontaneous Cries in the Real Context of Neonatal Intensive Care Units.
    Cabon S; Met-Montot B; Porée F; Rosec O; Simon A; Carrault G
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. INFANT CRYING DETECTION IN REAL-WORLD ENVIRONMENTS.
    Yao X; Micheletti M; Johnson M; Thomaz E; de Barbaro K
    Proc IEEE Int Conf Acoust Speech Signal Process; 2022 May; 2022():131-135. PubMed ID: 36311383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining and distinguishing infant behavioral states using acoustic cry analysis: is colic painful?
    Parga JJ; Lewin S; Lewis J; Montoya-Williams D; Alwan A; Shaul B; Han C; Bookheimer SY; Eyer S; Dapretto M; Zeltzer L; Dunlap L; Nookala U; Sun D; Dang BH; Anderson AE
    Pediatr Res; 2020 Feb; 87(3):576-580. PubMed ID: 31585457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Pattern Recognition Techniques to the Classification of Full-Term and Preterm Infant Cry.
    Orlandi S; Reyes Garcia CA; Bandini A; Donzelli G; Manfredi C
    J Voice; 2016 Nov; 30(6):656-663. PubMed ID: 26474712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Newborn infants' cry after heel-prick: analysis with sound spectrogram.
    Runefors P; Arnbjörnsson E; Elander G; Michelsson K
    Acta Paediatr; 2000 Jan; 89(1):68-72. PubMed ID: 10677061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fully automated approach for baby cry signal segmentation and boundary detection of expiratory and inspiratory episodes.
    Abou-Abbas L; Tadj C; Fersaie HA
    J Acoust Soc Am; 2017 Sep; 142(3):1318. PubMed ID: 28964073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-Based System for Learning and Inferring Hearing Aid Settings.
    Aldaz G; Puria S; Leifer LJ
    J Am Acad Audiol; 2016 Oct; 27(9):732-749. PubMed ID: 27718350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification.
    Hariharan M; Sindhu R; Vijean V; Yazid H; Nadarajaw T; Yaacob S; Polat K
    Comput Methods Programs Biomed; 2018 Mar; 155():39-51. PubMed ID: 29512503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic characteristics of crying in infantile laryngomalacia.
    Goberman AM; Robb MP
    Logoped Phoniatr Vocol; 2005; 30(2):79-84. PubMed ID: 16147227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic characteristics of naturally occurring cries of infants with "colic".
    Zeskind PS; Barr RG
    Child Dev; 1997 Jun; 68(3):394-403. PubMed ID: 9249956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multistage Heterogeneous Stacking Ensemble Model for Augmented Infant Cry Classification.
    Joshi VR; Srinivasan K; Vincent PMDR; Rajinikanth V; Chang CY
    Front Public Health; 2022; 10():819865. PubMed ID: 35400062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.