These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33928126)

  • 1. Salt-Dependent RNA Pseudoknot Stability: Effect of Spatial Confinement.
    Feng C; Tan YL; Cheng YX; Shi YZ; Tan ZJ
    Front Mol Biosci; 2021; 8():666369. PubMed ID: 33928126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D structure stability of the HIV-1 TAR RNA in ion solutions: A coarse-grained model study.
    Zhang BG; Qiu HH; Jiang J; Liu J; Shi YZ
    J Chem Phys; 2019 Oct; 151(16):165101. PubMed ID: 31675878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions.
    Shi YZ; Jin L; Feng CJ; Tan YL; Tan ZJ
    PLoS Comput Biol; 2018 Jun; 14(6):e1006222. PubMed ID: 29879103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability, and folding pathway.
    Jin L; Tan YL; Wu Y; Wang X; Shi YZ; Tan ZJ
    RNA; 2019 Nov; 25(11):1532-1548. PubMed ID: 31391217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions.
    Jin L; Shi YZ; Feng CJ; Tan YL; Tan ZJ
    Biophys J; 2018 Oct; 115(8):1403-1416. PubMed ID: 30236782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium unfolding pathway of an H-type RNA pseudoknot which promotes programmed -1 ribosomal frameshifting.
    Theimer CA; Giedroc DP
    J Mol Biol; 1999 Jun; 289(5):1283-99. PubMed ID: 10373368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of an mRNA pseudoknot required for stop codon readthrough: effects of mono- and divalent ions on stability.
    Gluick TC; Wills NM; Gesteland RF; Draper DE
    Biochemistry; 1997 Dec; 36(51):16173-86. PubMed ID: 9405051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt Effects on the Thermodynamics of a Frameshifting RNA Pseudoknot under Tension.
    Hori N; Denesyuk NA; Thirumalai D
    J Mol Biol; 2016 Jul; 428(14):2847-59. PubMed ID: 27315694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coarse-grained model with implicit salt for RNAs: predicting 3D structure, stability and salt effect.
    Shi YZ; Wang FH; Wu YY; Tan ZJ
    J Chem Phys; 2014 Sep; 141(10):105102. PubMed ID: 25217954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monovalent ions modulate the flux through multiple folding pathways of an RNA pseudoknot.
    Roca J; Hori N; Baral S; Velmurugu Y; Narayanan R; Narayanan P; Thirumalai D; Ansari A
    Proc Natl Acad Sci U S A; 2018 Jul; 115(31):E7313-E7322. PubMed ID: 30012621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crowding promotes the switch from hairpin to pseudoknot conformation in human telomerase RNA.
    Denesyuk NA; Thirumalai D
    J Am Chem Soc; 2011 Aug; 133(31):11858-61. PubMed ID: 21736319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-RNA interactions in the RNA pseudoknot of a ribosomal frameshifting site: molecular modeling studies.
    Le SY; Chen JH; Pattabiraman N; Maizel JV
    J Biomol Struct Dyn; 1998 Aug; 16(1):1-11. PubMed ID: 9745889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of the intercalated adenosine at the helical junction to the stability of the gag-pro frameshifting pseudoknot from mouse mammary tumor virus.
    Theimer CA; Giedroc DP
    RNA; 2000 Mar; 6(3):409-21. PubMed ID: 10744025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of folding a pseudoknotted mRNA fragment.
    Gluick TC; Draper DE
    J Mol Biol; 1994 Aug; 241(2):246-62. PubMed ID: 7520082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tertiary structure of an RNA pseudoknot is stabilized by "diffuse" Mg2+ ions.
    Soto AM; Misra V; Draper DE
    Biochemistry; 2007 Mar; 46(11):2973-83. PubMed ID: 17315982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus.
    Shen LX; Tinoco I
    J Mol Biol; 1995 Apr; 247(5):963-78. PubMed ID: 7723043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of stabilization of RNA pseudoknots by cobalt(III) hexaammine.
    Nixon PL; Theimer CA; Giedroc DP
    Biopolymers; 1999 Oct; 50(4):443-58. PubMed ID: 10423552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations.
    Biyun S; Cho SS; Thirumalai D
    J Am Chem Soc; 2011 Dec; 133(50):20634-43. PubMed ID: 22082261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of crowding and confinement: a comparison of Yfh1 stability in different environments.
    Sanfelice D; Politou A; Martin SR; De Los Rios P; Temussi P; Pastore A
    Phys Biol; 2013 Aug; 10(4):045002. PubMed ID: 23912905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability.
    Nixon PL; Giedroc DP
    Biochemistry; 1998 Nov; 37(46):16116-29. PubMed ID: 9819204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.