These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33928126)

  • 21. RNA 3D structure prediction by using a coarse-grained model and experimental data.
    Xia Z; Bell DR; Shi Y; Ren P
    J Phys Chem B; 2013 Mar; 117(11):3135-44. PubMed ID: 23438338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting.
    Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE
    EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational analysis of the pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. Aminoacylation efficiency and RNA pseudoknot stability.
    Mans RM; Van Steeg MH; Verlaan PW; Pleij CW; Bosch L
    J Mol Biol; 1992 Jan; 223(1):221-32. PubMed ID: 1731070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function.
    Theimer CA; Blois CA; Feigon J
    Mol Cell; 2005 Mar; 17(5):671-82. PubMed ID: 15749017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: a model for a possible family of structurally related RNA pseudoknots.
    Du Z; Giedroc DP; Hoffman DW
    Biochemistry; 1996 Apr; 35(13):4187-98. PubMed ID: 8672455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human telomerase RNA pseudoknot and hairpin thermal stability with glycine betaine and urea: preferential interactions with RNA secondary and tertiary structures.
    Schwinefus JJ; Kuprian MJ; Lamppa JW; Merker WE; Dorn KN; Muth GW
    Biochemistry; 2007 Aug; 46(31):9068-79. PubMed ID: 17630773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein unties the pseudoknot: S1-mediated unfolding of RNA higher order structure.
    Lund PE; Chatterjee S; Daher M; Walter NG
    Nucleic Acids Res; 2020 Feb; 48(4):2107-2125. PubMed ID: 31832686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot.
    Nixon PL; Giedroc DP
    J Mol Biol; 2000 Feb; 296(2):659-71. PubMed ID: 10669615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformation of a non-frameshifting RNA pseudoknot from mouse mammary tumor virus.
    Kang H; Hines JV; Tinoco I
    J Mol Biol; 1996 May; 259(1):135-47. PubMed ID: 8648641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Simulations of Ion Effects on the Thermodynamics of RNA Folding.
    Denesyuk NA; Hori N; Thirumalai D
    J Phys Chem B; 2018 Dec; 122(50):11860-11867. PubMed ID: 30468380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA.
    Chamorro M; Parkin N; Varmus HE
    Proc Natl Acad Sci U S A; 1992 Jan; 89(2):713-7. PubMed ID: 1309954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions.
    Shi YZ; Jin L; Wang FH; Zhu XL; Tan ZJ
    Biophys J; 2015 Dec; 109(12):2654-2665. PubMed ID: 26682822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coarse-grained model for predicting RNA folding thermodynamics.
    Denesyuk NA; Thirumalai D
    J Phys Chem B; 2013 May; 117(17):4901-11. PubMed ID: 23527587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ensemble simulations: folding, unfolding and misfolding of a high-efficiency frameshifting RNA pseudoknot.
    Q Nguyen KK; Gomez YK; Bakhom M; Radcliffe A; La P; Rochelle D; Lee JW; Sorin EJ
    Nucleic Acids Res; 2017 May; 45(8):4893-4904. PubMed ID: 28115636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study.
    Gupta A; Bansal M
    Phys Chem Chem Phys; 2016 Oct; 18(41):28767-28780. PubMed ID: 27722489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mutant RNA pseudoknot that promotes ribosomal frameshifting in mouse mammary tumor virus.
    Kang H; Tinoco I
    Nucleic Acids Res; 1997 May; 25(10):1943-9. PubMed ID: 9115361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-Based Model of RNA Pseudoknot Captures Magnesium-Dependent Folding Thermodynamics.
    Mandic A; Hayes RL; Lammert H; Cheng RR; Onuchic JN
    J Phys Chem B; 2019 Feb; 123(7):1505-1511. PubMed ID: 30676755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein folding and binding in confined spaces and in crowded solutions.
    Zhou HX
    J Mol Recognit; 2004; 17(5):368-75. PubMed ID: 15362094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein-protein interactions affect alpha helix stability in crowded environments.
    Macdonald B; McCarley S; Noeen S; van Giessen AE
    J Phys Chem B; 2015 Feb; 119(7):2956-67. PubMed ID: 25591002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamics of folding of the RNA pseudoknot of the T4 gene 32 autoregulatory messenger RNA.
    Qiu H; Kaluarachchi K; Du Z; Hoffman DW; Giedroc DP
    Biochemistry; 1996 Apr; 35(13):4176-86. PubMed ID: 8672454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.