BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33928244)

  • 1. Bayesian Markov models improve the prediction of binding motifs beyond first order.
    Ge W; Meier M; Roth C; Söding J
    NAR Genom Bioinform; 2021 Jun; 3(2):lqab026. PubMed ID: 33928244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences.
    Siebert M; Söding J
    Nucleic Acids Res; 2016 Jul; 44(13):6055-69. PubMed ID: 27288444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The next generation of transcription factor binding site prediction.
    Mathelier A; Wasserman WW
    PLoS Comput Biol; 2013; 9(9):e1003214. PubMed ID: 24039567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
    Omidi S; Zavolan M; Pachkov M; Breda J; Berger S; van Nimwegen E
    PLoS Comput Biol; 2017 Jul; 13(7):e1005176. PubMed ID: 28753602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MODER2: first-order Markov modeling and discovery of monomeric and dimeric binding motifs.
    Toivonen J; Das PK; Taipale J; Ukkonen E
    Bioinformatics; 2020 May; 36(9):2690-2696. PubMed ID: 31999322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BEESEM: estimation of binding energy models using HT-SELEX data.
    Ruan S; Swamidass SJ; Stormo GD
    Bioinformatics; 2017 Aug; 33(15):2288-2295. PubMed ID: 28379348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.
    Ozaki H; Iwasaki W
    Comput Biol Chem; 2016 Aug; 63():62-72. PubMed ID: 26971251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motif models proposing independent and interdependent impacts of nucleotides are related to high and low affinity transcription factor binding sites in Arabidopsis.
    Tsukanov AV; Mironova VV; Levitsky VG
    Front Plant Sci; 2022; 13():938545. PubMed ID: 35968123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DREME: motif discovery in transcription factor ChIP-seq data.
    Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1653-9. PubMed ID: 21543442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular discovery of monomeric and dimeric transcription factor binding motifs for large data sets.
    Toivonen J; Kivioja T; Jolma A; Yin Y; Taipale J; Ukkonen E
    Nucleic Acids Res; 2018 May; 46(8):e44. PubMed ID: 29385521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data.
    Levitsky V; Oshchepkov D; Zemlyanskaya E; Merkulova T
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data.
    Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B
    BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis of transcription factor binding models learned from PBM, HT-SELEX and ChIP data.
    Orenstein Y; Shamir R
    Nucleic Acids Res; 2014 Apr; 42(8):e63. PubMed ID: 24500199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP-chip data.
    Chen X; Guo L; Fan Z; Jiang T
    Bioinformatics; 2008 May; 24(9):1121-8. PubMed ID: 18325926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of topic models to a compendium of ChIP-Seq datasets uncovers recurrent transcriptional regulatory modules.
    Yang G; Ma A; Qin ZS; Chen L
    Bioinformatics; 2020 Apr; 36(8):2352-2358. PubMed ID: 31899481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MEME-ChIP: motif analysis of large DNA datasets.
    Machanick P; Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1696-7. PubMed ID: 21486936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.