These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33928244)

  • 41. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.
    Wang X; Lin P; Ho JWK
    BMC Genomics; 2018 Jan; 19(Suppl 1):929. PubMed ID: 29363433
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
    Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E
    Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of TF-Binding Site by Inclusion of Higher Order Position Dependencies.
    Zhou J; Lu Q; Xu R; Gui L; Wang H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1383-1393. PubMed ID: 30629513
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells.
    Boeva V
    Front Genet; 2016; 7():24. PubMed ID: 26941778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Learning position weight matrices from sequence and expression data.
    Chen X; Guo L; Fan Z; Jiang T
    Comput Syst Bioinformatics Conf; 2007; 6():249-60. PubMed ID: 17951829
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DAP-Seq Identification of Transcription Factor-Binding Sites in Potato.
    Franco-Zorrilla JM; Prat S
    Methods Mol Biol; 2021; 2354():123-142. PubMed ID: 34448158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of context-dependent motifs by contrasting ChIP binding data.
    Mason MJ; Plath K; Zhou Q
    Bioinformatics; 2010 Nov; 26(22):2826-32. PubMed ID: 20870645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TRACE: transcription factor footprinting using chromatin accessibility data and DNA sequence.
    Ouyang N; Boyle AP
    Genome Res; 2020 Jul; 30(7):1040-1046. PubMed ID: 32660981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Widespread effects of DNA methylation and intra-motif dependencies revealed by novel transcription factor binding models.
    Grau J; Schmidt F; Schulz MH
    Nucleic Acids Res; 2023 Oct; 51(18):e95. PubMed ID: 37650641
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PscanChIP: Finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments.
    Zambelli F; Pesole G; Pavesi G
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W535-43. PubMed ID: 23748563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling binding specificities of transcription factor pairs with random forests.
    Antikainen AA; Heinonen M; Lähdesmäki H
    BMC Bioinformatics; 2022 Jun; 23(1):212. PubMed ID: 35659235
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inference of transcriptional regulation in cancers.
    Jiang P; Freedman ML; Liu JS; Liu XS
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7731-6. PubMed ID: 26056275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinguishing direct versus indirect transcription factor-DNA interactions.
    Gordân R; Hartemink AJ; Bulyk ML
    Genome Res; 2009 Nov; 19(11):2090-100. PubMed ID: 19652015
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis.
    Kulakovskiy IV; Vorontsov IE; Yevshin IS; Sharipov RN; Fedorova AD; Rumynskiy EI; Medvedeva YA; Magana-Mora A; Bajic VB; Papatsenko DA; Kolpakov FA; Makeev VJ
    Nucleic Acids Res; 2018 Jan; 46(D1):D252-D259. PubMed ID: 29140464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CENTDIST: discovery of co-associated factors by motif distribution.
    Zhang Z; Chang CW; Goh WL; Sung WK; Cheung E
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W391-9. PubMed ID: 21602269
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities.
    Nitta KR; Vincentelli R; Jacox E; Cimino A; Ohtsuka Y; Sobral D; Satou Y; Cambillau C; Lemaire P
    Methods Mol Biol; 2019; 2025():487-517. PubMed ID: 31267468
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.