BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33928320)

  • 1. A double-layer dura mater based on poly(caprolactone-
    Jin S; Pu Y; Guo Z; Zhu W; Li S; Zhou X; Gao W; He B
    J Mater Chem B; 2021 May; 9(18):3863-3873. PubMed ID: 33928320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer.
    Shim WS; Kim JH; Park H; Kim K; Chan Kwon I; Lee DS
    Biomaterials; 2006 Oct; 27(30):5178-85. PubMed ID: 16797693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust and biodegradable hydroxyapatite/poly(lactide-
    Wang Y; Wu H; Liu Z; Cao J; Lin H; Cao H; Zhu X; Zhang X
    J Mater Chem B; 2024 Jun; 12(25):6117-6127. PubMed ID: 38841904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure for dural repair.
    Wang J; Li K; Xu J; Liu M; Li P; Li X; Fan Y
    J Mater Chem B; 2021 Sep; 9(37):7821-7834. PubMed ID: 34586141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends.
    Joo YS; Cha JR; Gong MS
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():426-435. PubMed ID: 30033273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Synthesis, characterization and electrospinning of biodegradable polyurethanes based on poly(epsilon-caprolactone) and L-lysine diisocynate].
    Han J; Ye L; Zhang A; Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1274-9. PubMed ID: 21374978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Bacteria- and Blood-Repellent Superhydrophobic Polyurethane Sponge Materials.
    Ozkan E; Mondal A; Singha P; Douglass M; Hopkins SP; Devine R; Garren M; Manuel J; Warnock J; Handa H
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51160-51173. PubMed ID: 33143413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of phosphoryl-choline-capped poly(epsilon-caprolactone)-poly(ethylene oxide) di-block co-polymers and its surface modification on polyurethanes.
    Zhang T; Song Z; Chen H; Yu X; Jiang Z
    J Biomater Sci Polym Ed; 2008; 19(4):509-24. PubMed ID: 18318962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable, anti-adhesive and tough polyurethane hydrogels crosslinked by triol crosslinkers.
    Xiao K; Wang Z; Wu Y; Lin W; He Y; Zhan J; Luo F; Li Z; Li J; Tan H; Fu Q
    J Biomed Mater Res A; 2019 Oct; 107(10):2205-2221. PubMed ID: 31116494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering.
    Tsai MC; Hung KC; Hung SC; Hsu SH
    Colloids Surf B Biointerfaces; 2015 Jan; 125():34-44. PubMed ID: 25460599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content.
    Zhang L; Zhang C; Zhang W; Zhang H; Hou Z
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization.
    Chen Z; Cheng S; Li Z; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(10):1451-71. PubMed ID: 19622282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering.
    Cortizo MS; Molinuevo MS; Cortizo AM
    J Tissue Eng Regen Med; 2008 Jan; 2(1):33-42. PubMed ID: 18273918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acid-based polyurethane films for wound dressing applications.
    Gultekin G; Atalay-Oral C; Erkal S; Sahin F; Karastova D; Tantekin-Ersolmaz SB; Guner FS
    J Mater Sci Mater Med; 2009 Jan; 20(1):421-31. PubMed ID: 18839285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composites for dural substitution.
    Hemstapat R; Suvannapruk W; Thammarakcharoen F; Chumnanvej S; Suwanprateeb J
    Proc Inst Mech Eng H; 2020 Aug; 234(8):854-863. PubMed ID: 32423302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.