These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

571 related articles for article (PubMed ID: 33928417)

  • 1. Sorghum mitigates climate variability and change on crop yield and quality.
    Chadalavada K; Kumari BDR; Kumar TS
    Planta; 2021 Apr; 253(5):113. PubMed ID: 33928417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A forecast of staple crop production in Burkina Faso to enable early warnings of shortages in domestic food availability.
    Laudien R; Schauberger B; Waid J; Gornott C
    Sci Rep; 2022 Jan; 12(1):1638. PubMed ID: 35102220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate resilience of dry season cereals in India.
    DeFries R; Liang S; Chhatre A; Davis KF; Ghosh S; Rao ND; Singh D
    Sci Rep; 2023 Jun; 13(1):9960. PubMed ID: 37340018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate drives variability and joint variability of global crop yields.
    Najafi E; Pal I; Khanbilvardi R
    Sci Total Environ; 2019 Apr; 662():361-372. PubMed ID: 30690370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of climate signals in the crop yield record of sub-Saharan Africa.
    Hoffman AL; Kemanian AR; Forest CE
    Glob Chang Biol; 2018 Jan; 24(1):143-157. PubMed ID: 28892592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of crop production losses in West Africa due to historical global warming in two crop models.
    Sultan B; Defrance D; Iizumi T
    Sci Rep; 2019 Sep; 9(1):12834. PubMed ID: 31492929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of climate in the trend and variability of Ethiopia's cereal crop yields.
    Yang M; Wang G; Ahmed KF; Adugna B; Eggen M; Atsbeha E; You L; Koo J; Anagnostou E
    Sci Total Environ; 2020 Jun; 723():137893. PubMed ID: 32220729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress.
    Abreha KB; Enyew M; Carlsson AS; Vetukuri RR; Feyissa T; Motlhaodi T; Ng'uni D; Geleta M
    Planta; 2021 Dec; 255(1):20. PubMed ID: 34894286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].
    Wang XY; Yang XG; Sun S; Xie WJ
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of climate extreme events on selected food crop yields in Sub-Saharan Africa.
    Akpa AF
    Heliyon; 2024 May; 10(9):e30796. PubMed ID: 38756606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversifying crops for food and nutrition security - a case of teff.
    Cheng A; Mayes S; Dalle G; Demissew S; Massawe F
    Biol Rev Camb Philos Soc; 2017 Feb; 92(1):188-198. PubMed ID: 26456883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate-resilient strategies for sustainable management of water resources and agriculture.
    Srivastav AL; Dhyani R; Ranjan M; Madhav S; Sillanpää M
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):41576-41595. PubMed ID: 34097218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing temperature cuts back crop yields in Hungary over the last 90 years.
    Pinke Z; Lövei GL
    Glob Chang Biol; 2017 Dec; 23(12):5426-5435. PubMed ID: 28699259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production.
    Kukal MS; Irmak S
    Sci Rep; 2018 Feb; 8(1):3450. PubMed ID: 29472598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water stress resilient cereal crops: Lessons from wild relatives.
    Toulotte JM; Pantazopoulou CK; Sanclemente MA; Voesenek LACJ; Sasidharan R
    J Integr Plant Biol; 2022 Feb; 64(2):412-430. PubMed ID: 35029029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing climate-resilient crops: improving plant tolerance to stress combination.
    Rivero RM; Mittler R; Blumwald E; Zandalinas SI
    Plant J; 2022 Jan; 109(2):373-389. PubMed ID: 34482588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security.
    Satyavathi CT; Ambawat S; Khandelwal V; Srivastava RK
    Front Plant Sci; 2021; 12():659938. PubMed ID: 34589092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nexus on climate change: agriculture and possible solution to cope future climate change stresses.
    Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.