These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Delivery of siRNA to the Eye: Protocol for a Feasibility Study to Assess Novel Delivery System for Topical Delivery of siRNA Therapeutics to the Ocular Surface. Baran-Rachwalska P; Saffie-Siebert S; Moore CBT Methods Mol Biol; 2021; 2282():443-453. PubMed ID: 33928589 [TBL] [Abstract][Full Text] [Related]
3. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Guzman-Aranguez A; Loma P; Pintor J Br J Pharmacol; 2013 Oct; 170(4):730-47. PubMed ID: 23937539 [TBL] [Abstract][Full Text] [Related]
4. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives. Naik S; Shreya AB; Raychaudhuri R; Pandey A; Lewis SA; Hazarika M; Bhandary SV; Rao BSS; Mutalik S Life Sci; 2021 Jan; 264():118712. PubMed ID: 33159955 [TBL] [Abstract][Full Text] [Related]
5. Nanoplatforms for Delivery of siRNA to the Eye. Kataki MS; Kakoti BB; Jameson M; Solanki A; Hirani A; Pathak Y Curr Pharm Des; 2015; 21(31):4587-93. PubMed ID: 26486145 [TBL] [Abstract][Full Text] [Related]
6. Bio-inspired materials in drug delivery: Exploring the role of pulmonary surfactant in siRNA inhalation therapy. De Backer L; Cerrada A; Pérez-Gil J; De Smedt SC; Raemdonck K J Control Release; 2015 Dec; 220(Pt B):642-50. PubMed ID: 26363301 [TBL] [Abstract][Full Text] [Related]
7. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics. Gentile E; Oba T; Lin J; Shao R; Meng F; Cao X; Lin HY; Mourad M; Pataer A; Baladandayuthapani V; Cai D; Roth JA; Ji L Oncotarget; 2017 Jul; 8(29):48222-48239. PubMed ID: 28637023 [TBL] [Abstract][Full Text] [Related]
8. Development of siRNA Therapeutics for the Treatment of Liver Diseases. Holm A; Løvendorf MB; Kauppinen S Methods Mol Biol; 2021; 2282():57-75. PubMed ID: 33928570 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. Varshosaz J; Farzan M World J Gastroenterol; 2015 Nov; 21(42):12022-41. PubMed ID: 26576089 [TBL] [Abstract][Full Text] [Related]
11. Strategies for silencing human disease using RNA interference. Kim DH; Rossi JJ Nat Rev Genet; 2007 Mar; 8(3):173-84. PubMed ID: 17304245 [TBL] [Abstract][Full Text] [Related]
13. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics. Zhou Y; Zhang C; Liang W J Control Release; 2014 Nov; 193():270-81. PubMed ID: 24816071 [TBL] [Abstract][Full Text] [Related]
14. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Campochiaro PA Gene Ther; 2006 Mar; 13(6):559-62. PubMed ID: 16195702 [TBL] [Abstract][Full Text] [Related]
15. Preparation, Determination of Activity, and Biodistribution of Cholesterol-Containing Nuclease-Resistant siRNAs In Vivo. Chernikov IV; Meschaninova MI; Chernolovskaya EL Methods Mol Biol; 2020; 2115():57-77. PubMed ID: 32006394 [TBL] [Abstract][Full Text] [Related]
16. Assessment of In Vivo siRNA Delivery in Cancer Mouse Models. Mangala LS; Rodriguez-Aguayo C; Bayraktar E; Jennings NB; Lopez-Berestein G; Sood AK Methods Mol Biol; 2021; 2372():157-168. PubMed ID: 34417750 [TBL] [Abstract][Full Text] [Related]
18. Chemical and structural modifications of RNAi therapeutics. Ku SH; Jo SD; Lee YK; Kim K; Kim SH Adv Drug Deliv Rev; 2016 Sep; 104():16-28. PubMed ID: 26549145 [TBL] [Abstract][Full Text] [Related]
19. Assessment of In Vivo siRNA Delivery in Cancer Mouse Models. Hatakeyama H; Wu SY; Mangala LS; Lopez-Berestein G; Sood AK Methods Mol Biol; 2016; 1402():189-197. PubMed ID: 26721492 [TBL] [Abstract][Full Text] [Related]