These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 33928588)

  • 41. Current issues of RNAi therapeutics delivery and development.
    Haussecker D
    J Control Release; 2014 Dec; 195():49-54. PubMed ID: 25111131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo self-assembled small RNAs as a new generation of RNAi therapeutics.
    Fu Z; Zhang X; Zhou X; Ur-Rehman U; Yu M; Liang H; Guo H; Guo X; Kong Y; Su Y; Ye Y; Hu X; Cheng W; Wu J; Wang Y; Gu Y; Lu SF; Wu D; Zen K; Li J; Yan C; Zhang CY; Chen X
    Cell Res; 2021 Jun; 31(6):631-648. PubMed ID: 33782530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Emerging Approaches for Enabling RNAi Therapeutics.
    Mallick AM; Tripathi A; Mishra S; Mukherjee A; Dutta C; Chatterjee A; Sinha Roy R
    Chem Asian J; 2022 Aug; 17(16):e202200451. PubMed ID: 35689534
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanovehicle-based Small Interfering RNA (siRNA) Delivery for Therapeutic Purposes: A New Molecular Approach in Pharmacogenomics.
    Akhtari J; Tafazoli A; Mehrad-Majd H; Mahrooz A
    Curr Clin Pharmacol; 2018; 13(3):173-182. PubMed ID: 29992895
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strategies for in vivo delivery of siRNAs: recent progress.
    Higuchi Y; Kawakami S; Hashida M
    BioDrugs; 2010 Jun; 24(3):195-205. PubMed ID: 20462284
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNA interference (RNAi) in hematology.
    Scherr M; Steinmann D; Eder M
    Ann Hematol; 2004 Jan; 83(1):1-8. PubMed ID: 14574462
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes.
    Singh Y; Tomar S; Khan S; Meher JG; Pawar VK; Raval K; Sharma K; Singh PK; Chaurasia M; Surendar Reddy B; Chourasia MK
    J Control Release; 2015 Dec; 220(Pt A):368-387. PubMed ID: 26528900
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeted Nanotherapies for the Posterior Segment of the Eye: An Integrative Review on Recent Advancements and Challenges.
    Gogoi NR; Marbaniang D; Pal P; Ray S; Mazumder B
    Pharm Nanotechnol; 2022 Nov; 10(4):268-278. PubMed ID: 35946098
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Where should siRNAs go: applicable organs for siRNA drugs.
    Ahn I; Kang CS; Han J
    Exp Mol Med; 2023 Jul; 55(7):1283-1292. PubMed ID: 37430086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small-interfering RNA (siRNA)-based functional micro- and nanostructures for efficient and selective gene silencing.
    Lee SH; Chung BH; Park TG; Nam YS; Mok H
    Acc Chem Res; 2012 Jul; 45(7):1014-25. PubMed ID: 22413937
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ocular Drug Delivery.
    Yavuz B; Kompella UB
    Handb Exp Pharmacol; 2017; 242():57-93. PubMed ID: 27783270
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel siRNA validation system for functional screening and identification of effective RNAi probes in mammalian cells.
    Hung CF; Lu KC; Cheng TL; Wu RH; Huang LY; Teng CF; Chang WT
    Biochem Biophys Res Commun; 2006 Aug; 346(3):707-20. PubMed ID: 16793020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Delivery of therapeutics for deep-seated ocular conditions - status quo.
    Nguyen H; Eng S; Ngo T; Dass CR
    J Pharm Pharmacol; 2018 Aug; 70(8):994-1001. PubMed ID: 29675844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Retina expression and cross-species validation of gene silencing by PF-655, a small interfering RNA against RTP801 for the treatment of ocular disease.
    Lee DU; Huang W; Rittenhouse KD; Jessen B
    J Ocul Pharmacol Ther; 2012 Jun; 28(3):222-30. PubMed ID: 22304497
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The therapeutic potential of RNA interference.
    Uprichard SL
    FEBS Lett; 2005 Oct; 579(26):5996-6007. PubMed ID: 16115631
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A review on recent drug delivery systems for posterior segment of eye.
    Nayak K; Misra M
    Biomed Pharmacother; 2018 Nov; 107():1564-1582. PubMed ID: 30257375
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chitosan-based nanostructures: a delivery platform for ocular therapeutics.
    de la Fuente M; RaviƱa M; Paolicelli P; Sanchez A; Seijo B; Alonso MJ
    Adv Drug Deliv Rev; 2010 Jan; 62(1):100-17. PubMed ID: 19958805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review.
    Supe S; Upadhya A; Singh K
    Exp Eye Res; 2021 Jan; 202():108329. PubMed ID: 33198953
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook.
    Shukla S; Sumaria CS; Pradeepkumar PI
    ChemMedChem; 2010 Mar; 5(3):328-49. PubMed ID: 20043313
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chitosan-based nanoparticles for mucosal delivery of RNAi therapeutics.
    Martirosyan A; Olesen MJ; Howard KA
    Adv Genet; 2014; 88():325-52. PubMed ID: 25409611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.