These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33928737)

  • 1. High-Energy-Density Magnesium-Air Battery Based on Dual-Layer Gel Electrolyte.
    Li L; Chen H; He E; Wang L; Ye T; Lu J; Jiao Y; Wang J; Gao R; Peng H; Zhang Y
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15317-15322. PubMed ID: 33928737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Flexible Li-Air Battery Workable under Harsh Conditions Based on an Integrated Structure: A Composite Lithium Anode Encased in a Gel Electrolyte.
    Li J; Wang Z; Yang L; Liu Y; Xing Y; Zhang S; Xu H
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18627-18637. PubMed ID: 33826284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.
    Zhang Y; Wang L; Guo Z; Xu Y; Wang Y; Peng H
    Angew Chem Int Ed Engl; 2016 Mar; 55(14):4487-91. PubMed ID: 26929017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Interfacial Passivation in Aqueous Electrolyte for Mg-Air Batteries with High Anode Utilization and Specific Capacity.
    Song Z; Wang J; Song Y; Chen Z; Zhang H; Wu Z; Han X; Hu W
    ChemSusChem; 2023 Apr; 16(7):e202202207. PubMed ID: 36624605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Lithium-Air Battery in Ambient Air with an In Situ Formed Gel Electrolyte.
    Lei X; Liu X; Ma W; Cao Z; Wang Y; Ding Y
    Angew Chem Int Ed Engl; 2018 Dec; 57(49):16131-16135. PubMed ID: 30320430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A PVA/LiCl/PEO interpenetrating composite electrolyte with a three-dimensional dual-network for all-solid-state flexible aluminum-air batteries.
    Chen L; Li B; Zhu L; Deng X; Sun X; Liu Y; Zhang C; Zhao W; Chen X
    RSC Adv; 2021 Dec; 11(62):39476-39483. PubMed ID: 35492453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg
    Tan YH; Yao WT; Zhang T; Ma T; Lu LL; Zhou F; Yao HB; Yu SH
    ACS Nano; 2018 Jun; 12(6):5856-5865. PubMed ID: 29701958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na-Air Batteries.
    Liu X; Lei X; Wang YG; Ding Y
    ACS Cent Sci; 2021 Feb; 7(2):335-344. PubMed ID: 33655071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization.
    Chen K; Yang DY; Huang G; Zhang XB
    Acc Chem Res; 2021 Feb; 54(3):632-641. PubMed ID: 33449629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Zinc-Air Battery with High Energy Efficiency and Freezing Tolerance Enabled by DMSO-Based Organohydrogel Electrolyte.
    Jiang D; Wang H; Wu S; Sun X; Li J
    Small Methods; 2022 Jan; 6(1):e2101043. PubMed ID: 35041284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual-Ion Battery.
    Xiang L; Ou X; Wang X; Zhou Z; Li X; Tang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17924-17930. PubMed ID: 32558980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Ultraflexible Silicon-Oxygen Battery Fiber with High Energy Density.
    Zhang Y; Jiao Y; Lu L; Wang L; Chen T; Peng H
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13741-13746. PubMed ID: 28940534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized Nanocomposite Gel Polymer Electrolyte with Strong Alkaline-Tolerance and High Zinc Anode Stability for Ultralong-Life Flexible Zinc-Air Batteries.
    Fan X; Wang H; Liu X; Liu J; Zhao N; Zhong C; Hu W; Lu J
    Adv Mater; 2023 Feb; 35(7):e2209290. PubMed ID: 36455877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Antifreezing Fiber-Shaped Zn/PANI Batteries with Suppressed Zn Dendrites and Operation in Sweat Electrolytes.
    Cong Z; Guo W; Zhang P; Sha W; Guo Z; Chang C; Xu F; Gang X; Hu W; Pu X
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17608-17617. PubMed ID: 33823580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VO
    Pei C; Xiong F; Sheng J; Yin Y; Tan S; Wang D; Han C; An Q; Mai L
    ACS Appl Mater Interfaces; 2017 May; 9(20):17060-17066. PubMed ID: 28467043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium Polyacrylate-Based Gel Polymer Electrolyte for Practical Zn-Ni Batteries.
    Li S; Fan X; Liu X; Zhao Z; Xu W; Wu Z; Feng Z; Zhong C; Hu W
    ACS Appl Mater Interfaces; 2022 Feb; ():. PubMed ID: 35103471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic/inorganic double solutions for magnesium-air batteries.
    Ma J; Hu P; Jia X; Zhang C; Wang G
    RSC Adv; 2021 Feb; 11(13):7502-7510. PubMed ID: 35423265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Cable-Type Flexible Rechargeable Zn Battery Based on MnO
    Wang K; Zhang X; Han J; Zhang X; Sun X; Li C; Liu W; Li Q; Ma Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24573-24582. PubMed ID: 29956913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.