BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33928782)

  • 1. Self-Assembled Borophene/Graphene Nanoribbon Mixed-Dimensional Heterostructures.
    Li Q; Liu X; Aklile EB; Li S; Hersam MC
    Nano Lett; 2021 May; 21(9):4029-4035. PubMed ID: 33928782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of electronically abrupt borophene/organic lateral heterostructures.
    Liu X; Wei Z; Balla I; Mannix AJ; Guisinger NP; Luijten E; Hersam MC
    Sci Adv; 2017 Feb; 3(2):e1602356. PubMed ID: 28261662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Borophene-graphene heterostructures.
    Liu X; Hersam MC
    Sci Adv; 2019 Oct; 5(10):eaax6444. PubMed ID: 31646179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seamless Staircase Electrical Contact to Semiconducting Graphene Nanoribbons.
    Ma C; Liang L; Xiao Z; Puretzky AA; Hong K; Lu W; Meunier V; Bernholc J; Li AP
    Nano Lett; 2017 Oct; 17(10):6241-6247. PubMed ID: 28876939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomically Sharp Lateral Superlattice Heterojunctions Built-In Nitrogen-Doped Nanoporous Graphene.
    Tenorio M; Moreno C; Febrer P; Castro-Esteban J; Ordejón P; Peña D; Pruneda M; Mugarza A
    Adv Mater; 2022 May; 34(20):e2110099. PubMed ID: 35334133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermixing and periodic self-assembly of borophene line defects.
    Liu X; Zhang Z; Wang L; Yakobson BI; Hersam MC
    Nat Mater; 2018 Sep; 17(9):783-788. PubMed ID: 30013053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of lateral heterostructures of semiconducting atomic layers.
    Zhang XQ; Lin CH; Tseng YW; Huang KH; Lee YH
    Nano Lett; 2015 Jan; 15(1):410-5. PubMed ID: 25494614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures.
    Almeida PA; Martins GB
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing borophene oxidation at the atomic scale.
    Liu X; Rahn MS; Ruan Q; Yakobson BI; Hersam MC
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral Interfaces between Monolayer MoS
    Haastrup MJ; Mammen MHR; Rodríguez-Fernández J; Lauritsen JV
    ACS Nano; 2021 Apr; 15(4):6699-6708. PubMed ID: 33750101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision Graphene Nanoribbon Heterojunctions by Chain-Growth Polymerization.
    Zhang JJ; Liu K; Xiao Y; Yu X; Huang L; Gao HJ; Ma J; Feng X
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202310880. PubMed ID: 37594477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Quantum-Confined Borophene Nanoribbons.
    Li Q; Wang L; Li H; Chan MKY; Hersam MC
    ACS Nano; 2024 Jan; 18(1):483-491. PubMed ID: 37939213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Probing of Image-Potential States and Electron Transfer Doping in Borophene Polymorphs.
    Liu X; Wang L; Yakobson BI; Hersam MC
    Nano Lett; 2021 Jan; 21(2):1169-1174. PubMed ID: 33455160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Surface Synthesis of a Nitrogen-Doped Graphene Nanoribbon with Multiple Substitutional Sites.
    Zhang Y; Lu J; Li Y; Li B; Ruan Z; Zhang H; Hao Z; Sun S; Xiong W; Gao L; Chen L; Cai J
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202204736. PubMed ID: 35452167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Borophene Synthesis on Au(111).
    Kiraly B; Liu X; Wang L; Zhang Z; Mannix AJ; Fisher BL; Yakobson BI; Hersam MC; Guisinger NP
    ACS Nano; 2019 Apr; 13(4):3816-3822. PubMed ID: 30844248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Dots in Graphene Nanoribbons.
    Wang S; Kharche N; Costa Girão E; Feng X; Müllen K; Meunier V; Fasel R; Ruffieux P
    Nano Lett; 2017 Jul; 17(7):4277-4283. PubMed ID: 28603996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene nanoribbon heterojunctions.
    Cai J; Pignedoli CA; Talirz L; Ruffieux P; Söde H; Liang L; Meunier V; Berger R; Li R; Feng X; Müllen K; Fasel R
    Nat Nanotechnol; 2014 Nov; 9(11):896-900. PubMed ID: 25194948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111).
    Merino-Díez N; Garcia-Lekue A; Carbonell-Sanromà E; Li J; Corso M; Colazzo L; Sedona F; Sánchez-Portal D; Pascual JI; de Oteyza DG
    ACS Nano; 2017 Nov; 11(11):11661-11668. PubMed ID: 29049879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Surface Synthesis of 8- and 10-Armchair Graphene Nanoribbons.
    Sun K; Ji P; Zhang J; Wang J; Li X; Xu X; Zhang H; Chi L
    Small; 2019 Apr; 15(15):e1804526. PubMed ID: 30891917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.