These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33928782)

  • 41. Ultranarrow heterojunctions of armchair-graphene nanoribbons as resonant-tunnelling devices.
    Sánchez-Ochoa F; Zhang J; Du Y; Huang Z; Canto G; Springborg M; Cocoletzi GH
    Phys Chem Chem Phys; 2019 Dec; 21(45):24867-24875. PubMed ID: 31517350
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
    Chen YC; Cao T; Chen C; Pedramrazi Z; Haberer D; de Oteyza DG; Fischer FR; Louie SG; Crommie MF
    Nat Nanotechnol; 2015 Feb; 10(2):156-60. PubMed ID: 25581888
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Location-selective growth of two-dimensional metallic/semiconducting transition metal dichalcogenide heterostructures.
    Gong X; Zhao X; Pam ME; Yao H; Li Z; Geng D; Pennycook SJ; Shi Y; Yang HY
    Nanoscale; 2019 Mar; 11(10):4183-4189. PubMed ID: 30789188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons.
    Cloke RR; Marangoni T; Nguyen GD; Joshi T; Rizzo DJ; Bronner C; Cao T; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2015 Jul; 137(28):8872-5. PubMed ID: 26153349
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum.
    Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S
    ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-Dimensional Magnetic Semiconducting Heterostructures of Single-Layer CrI
    Li P; Liu N; Zhang J; Chen S; Zhou X; Guo D; Wang C; Ji W; Zhong D
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19574-19581. PubMed ID: 37014936
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs.
    Campbell GP; Mannix AJ; Emery JD; Lee TL; Guisinger NP; Hersam MC; Bedzyk MJ
    Nano Lett; 2018 May; 18(5):2816-2821. PubMed ID: 29653052
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Morphological characterization and electronic properties of pristine and oxygen-exposed graphene nanoribbons on Ag(110).
    Barcelon JE; Smerieri M; Carraro G; Wojciechowski P; Vattuone L; Rocca M; Nappini S; Píš I; Magnano E; Bondino F; Vaghi L; Papagni A; Savio L
    Phys Chem Chem Phys; 2021 Apr; 23(13):7926-7937. PubMed ID: 33403374
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formation of Coherent 1H-1T Heterostructures in Single-Layer MoS
    Wu F; Liu Z; Hawthorne N; Chandross M; Moore Q; Argibay N; Curry JF; Batteas JD
    ACS Nano; 2020 Dec; 14(12):16939-16950. PubMed ID: 33253530
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Freestanding Borophene and Its Hybrids.
    Ranjan P; Sahu TK; Bhushan R; Yamijala SS; Late DJ; Kumar P; Vinu A
    Adv Mater; 2019 Jul; 31(27):e1900353. PubMed ID: 31044470
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism.
    Li Y; Huang L; Li B; Wang X; Zhou Z; Li J; Wei Z
    ACS Nano; 2016 Sep; 10(9):8938-46. PubMed ID: 27571025
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons.
    Chen X; Wang H; Wan H; Song K; Zhou G
    J Phys Condens Matter; 2011 Aug; 23(31):315304. PubMed ID: 21778565
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermoelectric properties of armchair graphene nanoribbons with array characteristics.
    Kuo DMT
    RSC Adv; 2024 Jan; 14(5):3513-3518. PubMed ID: 38259995
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces.
    Kolmer M; Steiner AK; Izydorczyk I; Ko W; Engelund M; Szymonski M; Li AP; Amsharov K
    Science; 2020 Jul; 369(6503):571-575. PubMed ID: 32586951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dense monolayer films of atomically precise graphene nanoribbons on metallic substrates enabled by direct contact transfer of molecular precursors.
    Teeter JD; Costa PS; Zahl P; Vo TH; Shekhirev M; Xu W; Zeng XC; Enders A; Sinitskii A
    Nanoscale; 2017 Dec; 9(47):18835-18844. PubMed ID: 29177282
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lateral heterostructures and one-dimensional interfaces in 2D transition metal dichalcogenides.
    Ávalos-Ovando O; Mastrogiuseppe D; Ulloa SE
    J Phys Condens Matter; 2019 May; 31(21):213001. PubMed ID: 30794993
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons.
    Talirz L; Söde H; Dumslaff T; Wang S; Sanchez-Valencia JR; Liu J; Shinde P; Pignedoli CA; Liang L; Meunier V; Plumb NC; Shi M; Feng X; Narita A; Müllen K; Fasel R; Ruffieux P
    ACS Nano; 2017 Feb; 11(2):1380-1388. PubMed ID: 28129507
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On-Surface Synthesis of Nanographenes and Graphene Nanoribbons on Titanium Dioxide.
    Zuzak R; Castro-Esteban J; Engelund M; Pérez D; Peña D; Godlewski S
    ACS Nano; 2023 Feb; 17(3):2580-2587. PubMed ID: 36692226
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interface formation in monolayer graphene-boron nitride heterostructures.
    Sutter P; Cortes R; Lahiri J; Sutter E
    Nano Lett; 2012 Sep; 12(9):4869-74. PubMed ID: 22871166
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lateral Fusion of Chemical Vapor Deposited N = 5 Armchair Graphene Nanoribbons.
    Chen Z; Wang HI; Bilbao N; Teyssandier J; Prechtl T; Cavani N; Tries A; Biagi R; De Renzi V; Feng X; Kläui M; De Feyter S; Bonn M; Narita A; Müllen K
    J Am Chem Soc; 2017 Jul; 139(28):9483-9486. PubMed ID: 28650622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.