These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33929068)

  • 21. Dye-sensitized photoelectrochemical water oxidation through a buried junction.
    Xu P; Huang T; Huang J; Yan Y; Mallouk TE
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6946-6951. PubMed ID: 29915092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of Prussian Blue by the two iron-reducing microorganisms Geobacter metallireducens and Shewanella alga.
    Jahn MK; Haderlein SB; Meckenstock RU
    Environ Microbiol; 2006 Feb; 8(2):362-7. PubMed ID: 16423022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. "Plug and Play" Photosensitizer-Catalyst Dyads for Water Oxidation.
    Chalil Oglou R; Ulusoy Ghobadi TG; Ozbay E; Karadas F
    ACS Appl Mater Interfaces; 2022 May; 14(18):21131-21140. PubMed ID: 35482427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers.
    Liu Y; Persson P; Sundström V; Wärnmark K
    Acc Chem Res; 2016 Aug; 49(8):1477-85. PubMed ID: 27455191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation.
    Pastore M; De Angelis F
    J Am Chem Soc; 2015 May; 137(17):5798-809. PubMed ID: 25866864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term stability study of Prussian blue-A quality assessment of water content and cyanide release.
    Mohammad A; Yang Y; Khan MA; Faustino PJ
    Clin Toxicol (Phila); 2015 Feb; 53(2):102-7. PubMed ID: 25608705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells.
    Brennaman MK; Dillon RJ; Alibabaei L; Gish MK; Dares CJ; Ashford DL; House RL; Meyer GJ; Papanikolas JM; Meyer TJ
    J Am Chem Soc; 2016 Oct; 138(40):13085-13102. PubMed ID: 27654634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Level Alignment as Descriptor for Semiconductor/Catalyst Systems in Water Splitting: The Case of Hematite/Cobalt Hexacyanoferrate Photoanodes.
    Hegner FS; Cardenas-Morcoso D; Giménez S; López N; Galan-Mascaros JR
    ChemSusChem; 2017 Nov; 10(22):4552-4560. PubMed ID: 28967707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Dye-Sensitized Photoelectrochemical Tandem Cell for Light Driven Hydrogen Production from Water.
    Sherman BD; Sheridan MV; Wee KR; Marquard SL; Wang D; Alibabaei L; Ashford DL; Meyer TJ
    J Am Chem Soc; 2016 Dec; 138(51):16745-16753. PubMed ID: 27976887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition.
    Wang D; Sheridan MV; Shan B; Farnum BH; Marquard SL; Sherman BD; Eberhart MS; Nayak A; Dares CJ; Das AK; Bullock RM; Meyer TJ
    J Am Chem Soc; 2017 Oct; 139(41):14518-14525. PubMed ID: 28810743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photophysical characterization of a chromophore/water oxidation catalyst containing a layer-by-layer assembly on nanocrystalline TiO2 using ultrafast spectroscopy.
    Bettis SE; Hanson K; Wang L; Gish MK; Concepcion JJ; Fang Z; Meyer TJ; Papanikolas JM
    J Phys Chem A; 2014 Nov; 118(45):10301-8. PubMed ID: 24734993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate.
    Lin KA; Chen BJ
    Chemosphere; 2017 Jan; 166():146-156. PubMed ID: 27693875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cobalt Hexacyanoferrate on BiVO
    Hegner FS; Herraiz-Cardona I; Cardenas-Morcoso D; López N; Galán-Mascarós JR; Gimenez S
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37671-37681. PubMed ID: 28975785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation.
    Wu L; Eberhart M; Nayak A; Brennaman MK; Shan B; Meyer TJ
    J Am Chem Soc; 2018 Nov; 140(44):15062-15069. PubMed ID: 30371065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transfer dynamics of peptide-derivatized Ru(II) -polypyridyl complexes on nanocrystalline metal oxide films.
    Hanson K; Wilger DJ; Jones ST; Harrison DP; Bettis SE; Luo H; Papanikolas JM; Waters ML; Meyer TJ
    Biopolymers; 2013; 100(1):25-37. PubMed ID: 23335165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cobalt-Doped ZnO Nanorods Coated with Nanoscale Metal-Organic Framework Shells for Water-Splitting Photoanodes.
    Galán-González A; Sivan AK; Hernández-Ferrer J; Bowen L; Di Mario L; Martelli F; Benito AM; Maser WK; Chaudhry MU; Gallant A; Zeze DA; Atkinson D
    ACS Appl Nano Mater; 2020 Aug; 3(8):7781-7788. PubMed ID: 32954224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight.
    Gueret R; Castillo CE; Rebarz M; Thomas F; Hargrove AA; Pécaut J; Sliwa M; Fortage J; Collomb MN
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):82-94. PubMed ID: 25997378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical Instability of Phosphonate-Derivatized, Ruthenium(III) Polypyridyl Complexes on Metal Oxide Surfaces.
    Hyde JT; Hanson K; Vannucci AK; Lapides AM; Alibabaei L; Norris MR; Meyer TJ; Harrison DP
    ACS Appl Mater Interfaces; 2015 May; 7(18):9554-62. PubMed ID: 25871342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of Photoanodes for Photocatalytic Water Oxidation by Combining a Heterogenized Iridium Water-Oxidation Catalyst with a High-Potential Porphyrin Photosensitizer.
    Materna KL; Jiang J; Regan KP; Schmuttenmaer CA; Crabtree RH; Brudvig GW
    ChemSusChem; 2017 Nov; 10(22):4526-4534. PubMed ID: 28876510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cobalt-Phosphate Catalysts with Reduced Bivalent Co-Ion States and Doped Nitrogen Atoms Playing as Active Sites for Facile Adsorption, Fast Charge Transfer, and Robust Stability in Photoelectrochemical Water Oxidation.
    Lee H; Kim KH; Choi WH; Moon BC; Kong HJ; Kang JK
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44366-44374. PubMed ID: 31670934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.