These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33929178)

  • 1. Insights into the Li Diffusion Mechanism in Si/C Composite Anodes for Lithium-Ion Batteries.
    Gao X; Lu W; Xu J
    ACS Appl Mater Interfaces; 2021 May; 13(18):21362-21370. PubMed ID: 33929178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Study of Lithium Diffusion in Si/C-Layer and Si/C
    Lashani Zand A; Niksirat A; Sanaee Z; Pourfath M
    ACS Omega; 2023 Nov; 8(47):44698-44707. PubMed ID: 38046306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries.
    Fan S; Wang H; Qian J; Cao Y; Yang H; Ai X; Zhong F
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16411-16416. PubMed ID: 32186361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting Lithium-Ion Transport Kinetics by Increasing the Local Lithium-Ion Concentration Gradient in Composite Anodes of Lithium-Ion Batteries.
    Wu W; Sun Z; He Q; Shi X; Ge X; Cheng J; Wang J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14752-14758. PubMed ID: 33729763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining ReaxFF Simulations and Experiments to Evaluate the Structure-Property Characteristics of Polymeric Binders in Si-Based Li-Ion Batteries.
    Bhati M; Nguyen QA; Biswal SL; Senftle TP
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41956-41967. PubMed ID: 34432417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal Synthesis of Silicon-Carbon Composite Material for Lithium-Ion Batteries.
    Su H; Barragan AA; Geng L; Long D; Ling L; Bozhilov KN; Mangolini L; Guo J
    Angew Chem Int Ed Engl; 2017 Aug; 56(36):10780-10785. PubMed ID: 28707367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Practical High-Energy and High-Power Lithium Battery Anodes: Present and Future.
    Wang C; Yang C; Zheng Z
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105213. PubMed ID: 35098702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Cost and Novel Si-Based Gel for Li-Ion Batteries.
    Lyu F; Sun Z; Nan B; Yu S; Cao L; Yang M; Li M; Wang W; Wu S; Zeng S; Liu H; Lu Z
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10699-10707. PubMed ID: 28256821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles calculations of bulk, surface and interfacial phases and properties of silicon graphite composites as anode materials for lithium ion batteries.
    Olou'ou Guifo SB; Mueller JE; Henriques D; Markus T
    Phys Chem Chem Phys; 2022 Apr; 24(16):9432-9448. PubMed ID: 35388824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-Architectured Composite Anode Enabling Long-Term Cycling Stability for High-Capacity Lithium-Ion Batteries.
    Kumar P; Berhaut CL; Zapata Dominguez D; De Vito E; Tardif S; Pouget S; Lyonnard S; Jouneau PH
    Small; 2020 Mar; 16(11):e1906812. PubMed ID: 32091177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing Densely Compacted Graphite/Si/SiO
    Wu H; Zheng L; Du N; Sun B; Ma J; Jiang Y; Gong J; Chen H; Wang L
    ACS Appl Mater Interfaces; 2021 May; 13(19):22323-22331. PubMed ID: 33955750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon Nanoparticles with a Polymer-Derived Carbon Shell for Improved Lithium-Ion Batteries: Investigation into Volume Expansion, Gas Evolution, and Particle Fracture.
    Schiele A; Breitung B; Mazilkin A; Schweidler S; Janek J; Gumbel S; Fleischmann S; Burakowska-Meise E; Sommer H; Brezesinski T
    ACS Omega; 2018 Dec; 3(12):16706-16713. PubMed ID: 31458300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon-Based Anodes with Long Cycle Life for Lithium-Ion Batteries Achieved by Significant Suppression of Their Volume Expansion in Ionic-Liquid Electrolyte.
    Domi Y; Usui H; Yamaguchi K; Yodoya S; Sakaguchi H
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2950-2960. PubMed ID: 30608119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode.
    Jeong G; Kim JG; Park MS; Seo M; Hwang SM; Kim YU; Kim YJ; Kim JH; Dou SX
    ACS Nano; 2014 Mar; 8(3):2977-85. PubMed ID: 24552160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of Silicon Core-Shell Structures for Li-ion Anodes.
    Rage B; Delbegue D; Louvain N; Lippens PE
    Chemistry; 2021 Nov; 27(66):16275-16290. PubMed ID: 34505732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Si-Cu
    Pei S; Guo J; He Z; Huang LA; Lu T; Gong J; Shao H; Wang J
    Chemistry; 2020 May; 26(27):6006-6016. PubMed ID: 32073696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Design of Si@SiO
    Shen D; Huang C; Gan L; Liu J; Gong Z; Long M
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7946-7954. PubMed ID: 29425021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.