These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33929233)

  • 1. Dynamic Nuclear Structure Emerges from Chromatin Cross-Links and Motors.
    Liu K; Patteson AE; Banigan EJ; Schwarz JM
    Phys Rev Lett; 2021 Apr; 126(15):158101. PubMed ID: 33929233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin dynamics governed by a set of nuclear structural proteins.
    Vivante A; Brozgol E; Bronshtein I; Levi V; Garini Y
    Genes Chromosomes Cancer; 2019 Jul; 58(7):437-451. PubMed ID: 30537111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression.
    van Steensel B; Belmont AS
    Cell; 2017 May; 169(5):780-791. PubMed ID: 28525751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motorized chain models of the ideal chromosome.
    Cao Z; Wolynes PG
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2407077121. PubMed ID: 38954553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nuclear lamina: molecular organization and interaction with chromatin.
    Goldberg M; Harel A; Gruenbaum Y
    Crit Rev Eukaryot Gene Expr; 1999; 9(3-4):285-93. PubMed ID: 10651245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular analysis of kinetochore-microtubule attachment in budding yeast.
    He X; Rines DR; Espelin CW; Sorger PK
    Cell; 2001 Jul; 106(2):195-206. PubMed ID: 11511347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lamins and lamin-binding proteins in functional chromatin organization.
    Gotzmann J; Foisner R
    Crit Rev Eukaryot Gene Expr; 1999; 9(3-4):257-65. PubMed ID: 10651242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-farnesylated B-type lamin can tether chromatin inside the nucleus and its chromatin interaction requires the Ig-fold region.
    Uchino R; Sugiyama S; Katagiri M; Chuman Y; Furukawa K
    Chromosoma; 2017 Feb; 126(1):125-144. PubMed ID: 26892013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular motors interacting with their own tracks.
    Artyomov MN; Morozov AY; Kolomeisky AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):040901. PubMed ID: 18517571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensile motor activity drives coherent motions in a model of interphase chromatin.
    Saintillan D; Shelley MJ; Zidovska A
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11442-11447. PubMed ID: 30348795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating Dynamic Chromosome Compaction: Methods for Bridging In Silico to In Vivo.
    He Y; Adalsteinsson D; Walker B; Lawrimore J; Forest MG; Bloom K
    Methods Mol Biol; 2022; 2415():211-220. PubMed ID: 34972957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer Physics of the Large-Scale Structure of Chromatin.
    Bianco S; Chiariello AM; Annunziatella C; Esposito A; Nicodemi M
    Methods Mol Biol; 2016; 1480():201-6. PubMed ID: 27659986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome positioning from activity-based segregation.
    Ganai N; Sengupta S; Menon GI
    Nucleic Acids Res; 2014 Apr; 42(7):4145-59. PubMed ID: 24459132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin Conformation Capture-Based Analysis of Nuclear Architecture.
    Grob S; Grossniklaus U
    Methods Mol Biol; 2017; 1456():15-32. PubMed ID: 27770354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium structure and dynamics in a microscopic model of thin-film active gels.
    Head DA; Briels WJ; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032705. PubMed ID: 24730872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Footprint traversal by adenosine-triphosphate-dependent chromatin remodeler motor.
    Garai A; Mani J; Chowdhury D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041902. PubMed ID: 22680493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations.
    Arbona JM; Herbert S; Fabre E; Zimmer C
    Genome Biol; 2017 May; 18(1):81. PubMed ID: 28468672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Investigation of Distributions of Run Lengths for Biological Molecular Motors.
    Zhang Y; Kolomeisky AB
    J Phys Chem B; 2018 Apr; 122(13):3272-3279. PubMed ID: 29058899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropy gives rise to topologically associating domains.
    Vasquez PA; Hult C; Adalsteinsson D; Lawrimore J; Forest MG; Bloom K
    Nucleic Acids Res; 2016 Jul; 44(12):5540-9. PubMed ID: 27257057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.