These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33929236)

  • 1. Mechanical Vibrational Relaxation of NO Scattering from Metal and Insulator Surfaces: When and Why They Are Different.
    Yin R; Jiang B
    Phys Rev Lett; 2021 Apr; 126(15):156101. PubMed ID: 33929236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Vibrational Relaxation of NO Scattered from Au(111): Importance of the Adiabatic Potential Energy Surface.
    Yin R; Zhang Y; Jiang B
    J Phys Chem Lett; 2019 Oct; 10(19):5969-5974. PubMed ID: 31538787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.
    Golibrzuch K; Shirhatti PR; Altschäffel J; Rahinov I; Auerbach DJ; Wodtke AM; Bartels C
    J Phys Chem A; 2013 Sep; 117(36):8750-60. PubMed ID: 23808714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational Relaxation of Highly Vibrationally Excited CO Scattered from Au(111): Evidence for CO
    Wagner RJV; Henning N; Krüger BC; Park GB; Altschäffel J; Kandratsenka A; Wodtke AM; Schäfer T
    J Phys Chem Lett; 2017 Oct; 8(19):4887-4892. PubMed ID: 28930463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: a combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface.
    Golibrzuch K; Shirhatti PR; Rahinov I; Kandratsenka A; Auerbach DJ; Wodtke AM; Bartels C
    J Chem Phys; 2014 Jan; 140(4):044701. PubMed ID: 25669561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Insights into Adiabatic and Nonadiabatic Vibrational Energy-Transfer Dynamics during Molecular Scattering from Metal Surfaces: The Importance of Surface Reactivity.
    Zhou X; Meng G; Guo H; Jiang B
    J Phys Chem Lett; 2022 Apr; 13(15):3450-3461. PubMed ID: 35412832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational Inelasticity of Highly Vibrationally Excited NO on Ag(111).
    Krüger BC; Meyer S; Kandratsenka A; Wodtke AM; Schäfer T
    J Phys Chem Lett; 2016 Feb; 7(3):441-6. PubMed ID: 26760437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereodynamics of adiabatic and non-adiabatic energy transfer in a molecule surface encounter.
    Zhang Y; Box CL; Schäfer T; Kandratsenka A; Wodtke AM; Maurer RJ; Jiang B
    Phys Chem Chem Phys; 2022 Aug; 24(33):19753-19760. PubMed ID: 35971747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic energy dissipation during scattering of vibrationally excited molecules at metal surfaces: ab initio simulations for HCl/Al(111).
    Grotemeyer M; Pehlke E
    Phys Rev Lett; 2014 Jan; 112(4):043201. PubMed ID: 24580447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-to-state dynamics at the gas-liquid metal interface: rotationally and electronically inelastic scattering of NO[2Π(1/2)(0.5)] from molten gallium.
    Ziemkiewicz MP; Roscioli JR; Nesbitt DJ
    J Chem Phys; 2011 Jun; 134(23):234703. PubMed ID: 21702572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic wave packet approach to nonadiabatic scattering of diatomic molecules from metals.
    Serwatka T; Tremblay JC
    J Chem Phys; 2019 May; 150(18):184105. PubMed ID: 31091890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).
    Kroes GJ; Pavanello M; Blanco-Rey M; Alducin M; Auerbach DJ
    J Chem Phys; 2014 Aug; 141(5):054705. PubMed ID: 25106598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-statistical intermolecular energy transfer from vibrationally excited benzene in a mixed nitrogen-benzene bath.
    Paul AK; West NA; Winner JD; Bowersox RDW; North SW; Hase WL
    J Chem Phys; 2018 Oct; 149(13):134101. PubMed ID: 30292226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton Quantization and Vibrational Relaxation in Nonadiabatic Dynamics of Photoinduced Proton-Coupled Electron Transfer in a Solvated Phenol-Amine Complex.
    Goyal P; Schwerdtfeger CA; Soudackov AV; Hammes-Schiffer S
    J Phys Chem B; 2016 Mar; 120(9):2407-17. PubMed ID: 26812149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonadiabatic effects on peptide vibrational dynamics induced by conformational changes.
    Antony J; Schmidt B; Schütte C
    J Chem Phys; 2005 Jan; 122(1):14309. PubMed ID: 15638661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Time resolved distribution of excitation energy in collisions of vibrationally excited KH with CO2].
    Feng L; Liu J; Wang SY; Zhang WJ; Li JL; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1758-62. PubMed ID: 25269275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrationally promoted electron emission from low work-function metal surfaces.
    White JD; Chen J; Matsiev D; Auerbach DJ; Wodtke AM
    J Chem Phys; 2006 Feb; 124(6):64702. PubMed ID: 16483224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced reactivity of highly vibrationally excited molecules on metal surfaces.
    Hou H; Huang Y; Gulding SJ; Rettner CT; Auerbach DJ; Wodtke AM
    Science; 1999 Jun; 284(5420):1647-50. PubMed ID: 10356389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N
    Shakouri K; Behler J; Meyer J; Kroes GJ
    J Phys Chem Lett; 2017 May; 8(10):2131-2136. PubMed ID: 28441867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrationally Mode-Specific Molecular Energy Transfer to Surface Electrons in Metastable Formaldehyde Scattering from Cesium-Covered Au(111).
    Sabour B; Wagner RJV; Krüger BC; Kandratsenka A; Wodtke AM; Schäfer T; Park GB
    J Phys Chem A; 2024 Jun; 128(25):4976-4983. PubMed ID: 38850250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.