These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 33929441)
1. Simple quantum key distribution using a stable transmitter-receiver scheme. Ma D; Liu X; Huang C; Chen H; Lin H; Wei K Opt Lett; 2021 May; 46(9):2152-2155. PubMed ID: 33929441 [TBL] [Abstract][Full Text] [Related]
2. Time-bin phase-encoding quantum key distribution using Sagnac-based optics and compatible electronics. Tang YL; Zhou C; Li DD; Xie ZL; Xu ML; Sun J; Zhang ZX; Jiang LJ; Wang LW; Liu GQ; Wu K; Ma Y; Zheng BR; Jiang MS; Wang Y; Zhao YK; Ma QL; Zhang D; Zhao MS; Bao WS; Tang SB Opt Express; 2023 Jul; 31(16):26335-26343. PubMed ID: 37710496 [TBL] [Abstract][Full Text] [Related]
3. Photonic integrated quantum key distribution receiver for multiple users. Kong L; Li Z; Li C; Cao L; Xing Z; Cao J; Wang Y; Cai X; Zhou X Opt Express; 2020 Jun; 28(12):18449-18455. PubMed ID: 32680043 [TBL] [Abstract][Full Text] [Related]
4. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Lucamarini M; Yuan ZL; Dynes JF; Shields AJ Nature; 2018 May; 557(7705):400-403. PubMed ID: 29720656 [TBL] [Abstract][Full Text] [Related]
5. Entanglement-based secure quantum cryptography over 1,120 kilometres. Yin J; Li YH; Liao SK; Yang M; Cao Y; Zhang L; Ren JG; Cai WQ; Liu WY; Li SL; Shu R; Huang YM; Deng L; Li L; Zhang Q; Liu NL; Chen YA; Lu CY; Wang XB; Xu F; Wang JY; Peng CZ; Ekert AK; Pan JW Nature; 2020 Jun; 582(7813):501-505. PubMed ID: 32541968 [TBL] [Abstract][Full Text] [Related]
6. Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits. Ding YY; Chen W; Chen H; Wang C; Li YP; Wang S; Yin ZQ; Guo GC; Han ZF Opt Lett; 2017 Mar; 42(6):1023-1026. PubMed ID: 28295082 [TBL] [Abstract][Full Text] [Related]
7. Vulnerability of Satellite Quantum Key Distribution to Disruption from Ground-Based Lasers. Gozzard DR; Walsh S; Weinhold T Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883906 [TBL] [Abstract][Full Text] [Related]
8. Optimized multi-head self-attention and gated-dilated convolutional neural network for quantum key distribution and error rate reduction. Kavitha RJ; Ilakkiaselvan D Network; 2024 Nov; 35(4):379-402. PubMed ID: 39014986 [TBL] [Abstract][Full Text] [Related]
9. Practical quantum key distribution protocol without monitoring signal disturbance. Sasaki T; Yamamoto Y; Koashi M Nature; 2014 May; 509(7501):475-8. PubMed ID: 24848060 [TBL] [Abstract][Full Text] [Related]
10. Phase encoded quantum key distribution up to 380 km in standard telecom grade fiber enabled by baseline error optimization. Pathak NK; Chaudhary S; Sangeeta ; Kanseri B Sci Rep; 2023 Sep; 13(1):15868. PubMed ID: 37739975 [TBL] [Abstract][Full Text] [Related]
11. Practical gigahertz quantum key distribution robust against channel disturbance. Wang S; Chen W; Yin ZQ; He DY; Hui C; Hao PL; Fan-Yuan GJ; Wang C; Zhang LJ; Kuang J; Liu SF; Zhou Z; Wang YG; Guo GC; Han ZF Opt Lett; 2018 May; 43(9):2030-2033. PubMed ID: 29714738 [TBL] [Abstract][Full Text] [Related]
12. Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km. Chen JP; Zhang C; Liu Y; Jiang C; Zhang W; Hu XL; Guan JY; Yu ZW; Xu H; Lin J; Li MJ; Chen H; Li H; You L; Wang Z; Wang XB; Zhang Q; Pan JW Phys Rev Lett; 2020 Feb; 124(7):070501. PubMed ID: 32142314 [TBL] [Abstract][Full Text] [Related]
13. Continuous-variable quantum key distribution robust against environmental disturbances. Zhao H; Wang T; Xu Y; Li L; Tan Z; Tan P; Huang P; Zeng G Opt Express; 2024 Feb; 32(5):7783-7799. PubMed ID: 38439451 [TBL] [Abstract][Full Text] [Related]
14. Simple continuous-variable quantum key distribution scheme using a Sagnac-based Gaussian modulator. Zhao H; Li H; Xu Y; Huang P; Wang T; Zeng G Opt Lett; 2022 Jun; 47(12):2939-2942. PubMed ID: 35709020 [TBL] [Abstract][Full Text] [Related]
15. Experimental quantum key distribution with decoy states. Zhao Y; Qi B; Ma X; Lo HK; Qian L Phys Rev Lett; 2006 Feb; 96(7):070502. PubMed ID: 16606067 [TBL] [Abstract][Full Text] [Related]
17. Cost-Optimization-Based Quantum Key Distribution over Quantum Key Pool Optical Networks. Jia J; Dong B; Kang L; Xie H; Guo B Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190447 [TBL] [Abstract][Full Text] [Related]
18. Field Test of Twin-Field Quantum Key Distribution through Sending-or-Not-Sending over 428 km. Liu H; Jiang C; Zhu HT; Zou M; Yu ZW; Hu XL; Xu H; Ma S; Han Z; Chen JP; Dai Y; Tang SB; Zhang W; Li H; You L; Wang Z; Hua Y; Hu H; Zhang H; Zhou F; Zhang Q; Wang XB; Chen TY; Pan JW Phys Rev Lett; 2021 Jun; 126(25):250502. PubMed ID: 34241519 [TBL] [Abstract][Full Text] [Related]
19. Proof-of-principle demonstration of measurement-device-independent quantum key distribution based on intrinsically stable polarization-modulated units. Yuan YP; Du C; Shen QQ; Wang JD; Yu YF; Wei ZJ; Chen ZX; Zhang ZM Opt Express; 2020 Apr; 28(8):10772-10782. PubMed ID: 32403601 [TBL] [Abstract][Full Text] [Related]
20. Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution. Roberts GL; Pittaluga M; Minder M; Lucamarini M; Dynes JF; Yuan ZL; Shields AJ Opt Lett; 2018 Oct; 43(20):5110-5113. PubMed ID: 30320832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]