These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33929481)

  • 21. Counter-effect of Brownian and elastic forces on the liquid-to-solid transition of microgel suspensions.
    Di Lorenzo F; Seiffert S
    Soft Matter; 2015 Jul; 11(26):5235-45. PubMed ID: 26053542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bulk rheology of sticky DNA-functionalized emulsions.
    Stoev ID; Caciagli A; Mukhopadhyay A; Ness C; Eiser E
    Phys Rev E; 2021 Nov; 104(5-1):054602. PubMed ID: 34942818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites.
    Genovese DB
    Adv Colloid Interface Sci; 2012; 171-172():1-16. PubMed ID: 22304831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Particle-wall tribology of slippery hydrogel particle suspensions.
    Shewan HM; Stokes JR; Cloitre M
    Soft Matter; 2017 Mar; 13(10):2099-2106. PubMed ID: 28224160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viscoelasticity of dense suspensions of thermosensitive microgel mixtures undergoing colloidal gelation.
    Minami S; Watanabe T; Suzuki D; Urayama K
    Soft Matter; 2018 Feb; 14(9):1596-1607. PubMed ID: 29411837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discontinuous shear thickening in Brownian suspensions by dynamic simulation.
    Mari R; Seto R; Morris JF; Denn MM
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the viscoelastic relaxation dynamics of soft particles
    Lin S; Zhao L; Liu S; Wang Y; Fu G
    Soft Matter; 2023 Jan; 19(3):502-511. PubMed ID: 36541141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.
    Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ
    Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motility-induced shear thickening in dense colloidal suspensions.
    Bayram AG; Schwarzendahl FJ; Löwen H; Biancofiore L
    Soft Matter; 2023 Jun; 19(24):4571-4578. PubMed ID: 37309209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of soft glassy dynamics in aqueous suspensions of an anisotropic charged swelling clay through pH adjustment.
    Shoaib M; Khan S; Wani OB; Abdala A; Seiphoori A; Bobicki ER
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):860-872. PubMed ID: 34425273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of particle stiffness and surface properties on the non-linear viscoelasticity of dense microgel suspensions.
    Vialetto J; Ramakrishna SN; Isa L; Laurati M
    J Colloid Interface Sci; 2024 Oct; 672():814-823. PubMed ID: 38878623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Denser fluids of charge-stabilized colloids form denser sediments.
    Nanikashvili PM; Butenko AV; Liber SR; Zitoun D; Sloutskin E
    Soft Matter; 2014 Jul; 10(27):4913-21. PubMed ID: 24870013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classification of the reversible-irreversible transitions in particle trajectories across the jamming transition point.
    Nagasawa K; Miyazaki K; Kawasaki T
    Soft Matter; 2019 Oct; 15(38):7557-7566. PubMed ID: 31528879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between rheology and structure of interpenetrating, deforming and compressing microgels.
    Conley GM; Zhang C; Aebischer P; Harden JL; Scheffold F
    Nat Commun; 2019 Jun; 10(1):2436. PubMed ID: 31164639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling.
    Ness C; Sun J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Order-disorder transition during shear thickening in bidisperse dense suspensions.
    Fu X; Liu Y; Lu J; Sun R
    J Colloid Interface Sci; 2024 May; 662():1044-1051. PubMed ID: 38387366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rheological Signature of Frictional Interactions in Shear Thickening Suspensions.
    Royer JR; Blair DL; Hudson SD
    Phys Rev Lett; 2016 May; 116(18):188301. PubMed ID: 27203345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing viscoelasticity of unhydrolyzed chicken sternal cartilage extract suspensions: Towards development of injectable therapeutics formulations.
    Hama B; Mahajan G; Kothapalli C
    J Mech Behav Biomed Mater; 2017 Aug; 72():90-101. PubMed ID: 28472711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shear jamming and fragility in fractal suspensions under confinement.
    C K S; Majumdar S; Sood AK
    Soft Matter; 2022 Nov; 18(46):8813-8819. PubMed ID: 36367113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Revealing the frictional transition in shear-thickening suspensions.
    Clavaud C; Bérut A; Metzger B; Forterre Y
    Proc Natl Acad Sci U S A; 2017 May; 114(20):5147-5152. PubMed ID: 28465437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.