These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33929534)

  • 21. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions.
    Rashid U; Yasmin H; Hassan MN; Naz R; Nosheen A; Sajjad M; Ilyas N; Keyani R; Jabeen Z; Mumtaz S; Alyemeni MN; Ahmad P
    Plant Cell Rep; 2022 Mar; 41(3):549-569. PubMed ID: 33410927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought-stress.
    Clifford SC; Arndt SK; Popp M; Jones HG
    J Exp Bot; 2002 Jan; 53(366):131-8. PubMed ID: 11741049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptomics and physiological analyses reveal co-ordinated alteration of metabolic pathways in Jatropha curcas drought tolerance.
    Sapeta H; Lourenço T; Lorenz S; Grumaz C; Kirstahler P; Barros PM; Costa JM; Sohn K; Oliveira MM
    J Exp Bot; 2016 Feb; 67(3):845-60. PubMed ID: 26602946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole plant response of Pongamia pinnata to drought stress tolerance revealed by morpho-physiological, biochemical and transcriptome analysis.
    Rajarajan K; Sakshi S; Taria S; Prathima PT; Radhakrishna A; Anuragi H; Ashajyothi M; Bharati A; Handa AK; Arunachalam A
    Mol Biol Rep; 2022 Oct; 49(10):9453-9463. PubMed ID: 36057878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inferring the genetic responses to acute drought stress across an ecological gradient.
    Devitt JK; Chung A; Schenk JJ
    BMC Genomics; 2022 Jan; 23(1):3. PubMed ID: 34983380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of saline irrigation water on gas exchange and proline metabolism in ber (Ziziphus).
    Bagdi DL; Bagri GK
    J Environ Biol; 2016 Sep; 37(5):873-9. PubMed ID: 29251470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes.
    Tiwari P; Srivastava D; Chauhan AS; Indoliya Y; Singh PK; Tiwari S; Fatima T; Mishra SK; Dwivedi S; Agarwal L; Singh PC; Asif MH; Tripathi RD; Shirke PA; Chakrabarty D; Chauhan PS; Nautiyal CS
    Ecotoxicol Environ Saf; 2021 Jan; 207():111252. PubMed ID: 32916530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel TF molecular switch-mechanism found in two contrasting ecotypes of a psammophyte, Agriophyllum squarrosum, in regulating transcriptional drought memory.
    Fang T; Qian C; Daoura BG; Yan X; Fan X; Zhao P; Liao Y; Shi L; Chang Y; Ma XF
    BMC Plant Biol; 2023 Mar; 23(1):167. PubMed ID: 36997861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heat stress inducible cytoplasmic isoform of ClpB1 from Z. nummularia exhibits enhanced thermotolerance in transgenic tobacco.
    Panzade KP; Vishwakarma H; Padaria JC
    Mol Biol Rep; 2020 May; 47(5):3821-3831. PubMed ID: 32367315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions.
    Pasini L; Bergonti M; Fracasso A; Marocco A; Amaducci S
    J Plant Physiol; 2014 Apr; 171(7):537-48. PubMed ID: 24655390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress.
    Arndt SK; Clifford SC; Wanek W; Jones HG; Popp M
    Tree Physiol; 2001 Jul; 21(11):705-15. PubMed ID: 11470656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the cuticular wax composition and ecophysiological studies in an arid plant -
    Alfarhan AH; Rajakrishnan R; Al-Shehri MA; Al-Tamimi ABSM; Al-Obaid S; Khalaf S
    Saudi J Biol Sci; 2020 Jan; 27(1):318-323. PubMed ID: 31889853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.
    Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T
    Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of summer drought on the yield of Arundo donax is reduced by the retention of photosynthetic capacity and leaf growth later in the growing season.
    Haworth M; Marino G; Riggi E; Avola G; Brunetti C; Scordia D; Testa G; Thiago Gaudio Gomes M; Loreto F; Luciano Cosentino S; Centritto M
    Ann Bot; 2019 Oct; 124(4):567-580. PubMed ID: 30566593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes.
    Dey A; Samanta MK; Gayen S; Sen SK; Maiti MK
    PLoS One; 2016; 11(3):e0150763. PubMed ID: 26959651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional responses to drought stress in root and leaf of chickpea seedling.
    Wang X; Liu Y; Jia Y; Gu H; Ma H; Yu T; Zhang H; Chen Q; Ma L; Gu A; Zhang J; Shi S; Ma H
    Mol Biol Rep; 2012 Aug; 39(8):8147-58. PubMed ID: 22562393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of drought tolerance genes in tropical upland rice cultivars (Oryza sativa).
    Silveira RD; Abreu FR; Mamidi S; McClean PE; Vianello RP; Lanna AC; Carneiro NP; Brondani C
    Genet Mol Res; 2015 Jul; 14(3):8181-200. PubMed ID: 26345744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The molecular chaperone binding protein BiP prevents leaf dehydration-induced cellular homeostasis disruption.
    Carvalho HH; Brustolini OJ; Pimenta MR; Mendes GC; Gouveia BC; Silva PA; Silva JC; Mota CS; Soares-Ramos JR; Fontes EP
    PLoS One; 2014; 9(1):e86661. PubMed ID: 24489761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering.
    Zhang JY; Cruz DE Carvalho MH; Torres-Jerez I; Kang Y; Allen SN; Huhman DV; Tang Y; Murray J; Sumner LW; Udvardi MK
    Plant Cell Environ; 2014 Nov; 37(11):2553-76. PubMed ID: 24661137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.