These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33929534)

  • 41. Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet).
    Ghatak A; Chaturvedi P; Nagler M; Roustan V; Lyon D; Bachmann G; Postl W; Schröfl A; Desai N; Varshney RK; Weckwerth W
    J Proteomics; 2016 Jun; 143():122-135. PubMed ID: 26944736
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The response of Hordeum spontaneum desert ecotype to drought and excessive light intensity is characterized by induction of O2 dependent photochemical activity and anthocyanin accumulation.
    Eppel A; Keren N; Salomon E; Volis S; Rachmilevitch S
    Plant Sci; 2013 Mar; 201-202():74-80. PubMed ID: 23352404
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elevated temperature and drought stress significantly affect fruit quality and activity of anthocyanin-related enzymes in jujube (Ziziphus jujuba Mill. cv. 'Lingwuchangzao').
    Jiang W; Li N; Zhang D; Meinhardt L; Cao B; Li Y; Song L
    PLoS One; 2020; 15(11):e0241491. PubMed ID: 33152049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unravelling the treasure trove of drought-responsive genes in wild-type peanut through transcriptomics and physiological analyses of root.
    Thoppurathu FJ; Ghorbanzadeh Z; Vala AK; Hamid R; Joshi M
    Funct Integr Genomics; 2022 Apr; 22(2):215-233. PubMed ID: 35195841
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress.
    Wang J; Zheng R; Bai S; Gao X; Liu M; Yan W
    PLoS One; 2015; 10(4):e0124442. PubMed ID: 25893685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative physiological and root transcriptome analysis of two annual ryegrass cultivars under drought stress.
    Cheng SB; Yang XZ; Zou L; Wu DD; Lu JL; Cheng YR; Wang Y; Zeng J; Kang HY; Sha LN; Fan X; Ma X; Zhang XQ; Zhou YH; Zhang HQ
    J Plant Physiol; 2022 Oct; 277():153807. PubMed ID: 36095952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptomic, biochemical and physio-anatomical investigations shed more light on responses to drought stress in two contrasting sesame genotypes.
    Dossa K; Li D; Wang L; Zheng X; Liu A; Yu J; Wei X; Zhou R; Fonceka D; Diouf D; Liao B; Cissé N; Zhang X
    Sci Rep; 2017 Aug; 7(1):8755. PubMed ID: 28821876
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight.
    Liu TY; Chen MX; Zhang Y; Zhu FY; Liu YG; Tian Y; Fernie AR; Ye N; Zhang J
    Planta; 2019 Oct; 250(4):1355-1369. PubMed ID: 31278465
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physiological, Biochemical and Transcriptomic Analysis of the Aerial Parts (Leaf-Blade and Petiole) of
    Liu F; Ali T; Liu Z
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948197
    [No Abstract]   [Full Text] [Related]  

  • 50. Leaf responses to mild drought stress in natural variants of Arabidopsis.
    Clauw P; Coppens F; De Beuf K; Dhondt S; Van Daele T; Maleux K; Storme V; Clement L; Gonzalez N; Inzé D
    Plant Physiol; 2015 Mar; 167(3):800-16. PubMed ID: 25604532
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptome profiles identify the common responsive genes to drought stress in two Elymus species.
    Li MQ; Yang J; Wang X; Li DX; Zhang CB; Tian ZH; You MH; Bai SQ; Lin HH
    J Plant Physiol; 2020 Jul; 250():153183. PubMed ID: 32422512
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of differentially expressed genes in leaf of Reaumuria soongorica under PEG-induced drought stress by digital gene expression profiling.
    Liu Y; Liu M; Li X; Cao B; Ma X
    PLoS One; 2014; 9(4):e94277. PubMed ID: 24736242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions.
    Chen LM; Zhou XA; Li WB; Chang W; Zhou R; Wang C; Sha AH; Shan ZH; Zhang CJ; Qiu DZ; Yang ZL; Chen SL
    BMC Genomics; 2013 Oct; 14():687. PubMed ID: 24093224
    [TBL] [Abstract][Full Text] [Related]  

  • 54. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes.
    Huda KM; Banu MS; Garg B; Tula S; Tuteja R; Tuteja N
    Plant J; 2013 Dec; 76(6):997-1015. PubMed ID: 24128296
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relative contribution of different members of OsDREB gene family to osmotic stress tolerance in indica and japonica ecotypes of rice.
    Chakraborty K; Jena P; Mondal S; Dash GK; Ray S; Baig MJ; Swain P
    Plant Biol (Stuttg); 2022 Mar; 24(2):356-366. PubMed ID: 34939275
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptional profiling of the leaves of near-isogenic rice lines with contrasting drought tolerance at the reproductive stage in response to water deficit.
    Moumeni A; Satoh K; Venuprasad R; Serraj R; Kumar A; Leung H; Kikuchi S
    BMC Genomics; 2015 Dec; 16():1110. PubMed ID: 26715311
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance.
    Hopper DW; Ghan R; Schlauch KA; Cramer GR
    BMC Plant Biol; 2016 May; 16(1):118. PubMed ID: 27215785
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiological performance and differential expression profiling of genes associated with drought tolerance in root tissue of four contrasting varieties of two Gossypium species.
    Singh R; Pandey N; Kumar A; Shirke PA
    Protoplasma; 2016 Jan; 253(1):163-74. PubMed ID: 25802007
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    Jing X; Yao J; Ma X; Zhang Y; Sun Y; Xiang M; Hou P; Li N; Zhao R; Li J; Zhou X; Chen S
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397215
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars.
    Mofatto LS; Carneiro Fde A; Vieira NG; Duarte KE; Vidal RO; Alekcevetch JC; Cotta MG; Verdeil JL; Lapeyre-Montes F; Lartaud M; Leroy T; De Bellis F; Pot D; Rodrigues GC; Carazzolle MF; Pereira GA; Andrade AC; Marraccini P
    BMC Plant Biol; 2016 Apr; 16():94. PubMed ID: 27095276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.