BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33929776)

  • 1. The Influence of Ligand Density and Degradability on Hydrogel Induced Breast Cancer Dormancy and Reactivation.
    Farino Reyes CJ; Pradhan S; Slater JH
    Adv Healthc Mater; 2021 Jun; 10(11):e2002227. PubMed ID: 33929776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Hydrogel Adhesivity and Degradability to Model the Influence of Premetastatic Niche Matrix Properties on Breast Cancer Dormancy and Reactivation.
    Farino Reyes CJ; Slater JH
    Adv Biol (Weinh); 2022 May; 6(5):e2200012. PubMed ID: 35277951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable hydrogels for controlling phenotypic cancer cell states to model breast cancer dormancy and reactivation.
    Pradhan S; Slater JH
    Biomaterials; 2019 Sep; 215():119177. PubMed ID: 31176804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Datasets describing hydrogel properties and cellular metrics for modeling of tumor dormancy.
    Pradhan S; Slater JH
    Data Brief; 2019 Aug; 25():104128. PubMed ID: 31312698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Matrix-Induced Dormancy on Metastatic Breast Cancer Chemoresistance.
    Farino CJ; Pradhan S; Slater JH
    ACS Appl Bio Mater; 2020 Sep; 3(9):5832-5844. PubMed ID: 34913030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy.
    Pradhan S; Slater JH
    MethodsX; 2019; 6():2744-2766. PubMed ID: 31828024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels.
    Xin S; Gregory CA; Alge DL
    Acta Biomater; 2020 Jan; 101():227-236. PubMed ID: 31711899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Varying the RGD concentration on a hyaluronic acid hydrogel influences dormancy versus proliferation in brain metastatic breast cancer cells.
    Goodarzi K; Lane R; Rao SS
    J Biomed Mater Res A; 2024 May; 112(5):710-720. PubMed ID: 38018303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics.
    Shubin AD; Felong TJ; Schutrum BE; Joe DSL; Ovitt CE; Benoit DSW
    Acta Biomater; 2017 Mar; 50():437-449. PubMed ID: 28039063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids.
    Hill L; Bruns J; Zustiak SP
    Acta Biomater; 2021 Sep; 132():437-447. PubMed ID: 34010694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells.
    Narkhede AA; Crenshaw JH; Crossman DK; Shevde LA; Rao SS
    Acta Biomater; 2020 Apr; 107():65-77. PubMed ID: 32119920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Biomimetic Hyaluronic Acid Hydrogel Models Mass Dormancy in Brain Metastatic Breast Cancer Spheroids.
    Kondapaneni RV; Shevde LA; Rao SS
    Adv Biol (Weinh); 2023 Jan; 7(1):e2200114. PubMed ID: 36354182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Genes Regulating Breast Cancer Dormancy in 3D Bone Endosteal Niche Cultures.
    McGrath J; Panzica L; Ransom R; Withers HG; Gelman IH
    Mol Cancer Res; 2019 Apr; 17(4):860-869. PubMed ID: 30651373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels.
    Wang C; Tong X; Jiang X; Yang F
    J Biomed Mater Res A; 2017 Mar; 105(3):770-778. PubMed ID: 27770562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.
    Behravesh E; Zygourakis K; Mikos AG
    J Biomed Mater Res A; 2003 May; 65(2):260-70. PubMed ID: 12734821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of FGF2 and PEG hydrogel matrix properties on hMSC viability and spreading.
    King WJ; Jongpaiboonkit L; Murphy WL
    J Biomed Mater Res A; 2010 Jun; 93(3):1110-23. PubMed ID: 19768790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays.
    Jongpaiboonkit L; King WJ; Murphy WL
    Tissue Eng Part A; 2009 Feb; 15(2):343-53. PubMed ID: 18759676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics.
    Rizzi SC; Ehrbar M; Halstenberg S; Raeber GP; Schmoekel HG; Hagenmüller H; Müller R; Weber FE; Hubbell JA
    Biomacromolecules; 2006 Nov; 7(11):3019-29. PubMed ID: 17096527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels.
    Leslie-Barbick JE; Moon JJ; West JL
    J Biomater Sci Polym Ed; 2009; 20(12):1763-79. PubMed ID: 19723440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combination of matrix stiffness and degradability dictate microvascular network assembly and remodeling in cell-laden poly(ethylene glycol) hydrogels.
    Friend NE; McCoy AJ; Stegemann JP; Putnam AJ
    Biomaterials; 2023 Apr; 295():122050. PubMed ID: 36812843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.