These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 33929817)
1. Long-Range Ordering Effects in Magnetic Nanoparticles. Myrovali E; Papadopoulos K; Iglesias I; Spasova M; Farle M; Wiedwald U; Angelakeris M ACS Appl Mater Interfaces; 2021 May; 13(18):21602-21612. PubMed ID: 33929817 [TBL] [Abstract][Full Text] [Related]
2. Structural Properties and Magnetic Ordering in 2D Polymer Nanocomposites: Existence of Long Magnetic Dipolar Chains in Zero Field. Appel C; Kuttich B; Stühn L; Stark RW; Stühn B Langmuir; 2019 Sep; 35(37):12180-12191. PubMed ID: 31430162 [TBL] [Abstract][Full Text] [Related]
3. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia. Myrovali E; Maniotis N; Makridis A; Terzopoulou A; Ntomprougkidis V; Simeonidis K; Sakellari D; Kalogirou O; Samaras T; Salikhov R; Spasova M; Farle M; Wiedwald U; Angelakeris M Sci Rep; 2016 Nov; 6():37934. PubMed ID: 27897195 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Collective Magnetic Properties in 2D Monolayers of Iron Oxide Nanoparticles Favored by Local Order and Local 1D Shape Anisotropy. Toulemon D; Liu Y; Cattoën X; Leuvrey C; Bégin-Colin S; Pichon BP Langmuir; 2016 Feb; 32(6):1621-8. PubMed ID: 26807596 [TBL] [Abstract][Full Text] [Related]
5. High Frequency Hysteresis Losses on γ-Fe₂O₃ and Fe₃O₄: Susceptibility as a Magnetic Stamp for Chain Formation. Morales I; Costo R; Mille N; Silva GBD; Carrey J; Hernando A; Presa P Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30477241 [TBL] [Abstract][Full Text] [Related]
6. DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals. Park SS; Urbach ZJ; Brisbois CA; Parker KA; Partridge BE; Oh T; Dravid VP; Olvera de la Cruz M; Mirkin CA Adv Mater; 2020 Jan; 32(4):e1906626. PubMed ID: 31814172 [TBL] [Abstract][Full Text] [Related]
7. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators. Sakellari D; Brintakis K; Kostopoulou A; Myrovali E; Simeonidis K; Lappas A; Angelakeris M Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():187-93. PubMed ID: 26478302 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous in-flight assembly of magnetic nanoparticles into macroscopic chains. Balcells L; Stanković I; Konstantinović Z; Alagh A; Fuentes V; López-Mir L; Oró J; Mestres N; García C; Pomar A; Martínez B Nanoscale; 2019 Aug; 11(30):14194-14202. PubMed ID: 31198921 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale Brownian heating by interacting magnetic dipolar particles. Chalopin Y; Bacri JC; Gazeau F; Devaud M Sci Rep; 2017 May; 7(1):1656. PubMed ID: 28490761 [TBL] [Abstract][Full Text] [Related]
11. Magnetic assembly route to colloidal responsive photonic nanostructures. He L; Wang M; Ge J; Yin Y Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015 [TBL] [Abstract][Full Text] [Related]
12. Crossover From Individual to Collective Magnetism in Dense Nanoparticle Systems: Local Anisotropy Versus Dipolar Interactions. Sánchez EH; Vasilakaki M; Lee SS; Normile PS; Andersson MS; Mathieu R; López-Ortega A; Pichon BP; Peddis D; Binns C; Nordblad P; Trohidou K; Nogués J; De Toro JA Small; 2022 Jul; 18(28):e2106762. PubMed ID: 35689307 [TBL] [Abstract][Full Text] [Related]
13. Magnetic field-assisted assembly of iron oxide mesocrystals: a matter of nanoparticle shape and magnetic anisotropy. Brunner JJ; Krumova M; Cölfen H; Sturm Née Rosseeva EV Beilstein J Nanotechnol; 2019; 10():894-900. PubMed ID: 31165016 [TBL] [Abstract][Full Text] [Related]
14. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Caizer C Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292 [TBL] [Abstract][Full Text] [Related]
15. Reinforcing Supramolecular Bonding with Magnetic Dipole Interactions to Assemble Dynamic Nanoparticle Superlattices. Santos PJ; Macfarlane RJ J Am Chem Soc; 2020 Jan; 142(3):1170-1174. PubMed ID: 31905284 [TBL] [Abstract][Full Text] [Related]
16. The formation of linear aggregates in magnetic hyperthermia: implications on specific absorption rate and magnetic anisotropy. Saville SL; Qi B; Baker J; Stone R; Camley RE; Livesey KL; Ye L; Crawford TM; Mefford OT J Colloid Interface Sci; 2014 Jun; 424():141-51. PubMed ID: 24767510 [TBL] [Abstract][Full Text] [Related]
17. Magnetic-field-induced self-assembly of FeCo/CoFe Mohapatra J; Elkins J; Xing M; Guragain D; Mishra SR; Liu JP Nanoscale; 2021 Mar; 13(8):4519-4529. PubMed ID: 33620040 [TBL] [Abstract][Full Text] [Related]
18. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism. Jiang C; Leung CW; Pong PW Nanoscale Res Lett; 2016 Dec; 11(1):189. PubMed ID: 27067737 [TBL] [Abstract][Full Text] [Related]
19. Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity. Togashi T; Naka T; Asahina S; Sato K; Takami S; Adschiri T Dalton Trans; 2011 Feb; 40(5):1073-8. PubMed ID: 21173987 [TBL] [Abstract][Full Text] [Related]
20. Evolution of nematic and ferromagnetic ordering in suspensions of magnetic nanoplatelets. Mertelj A; Lampret B; Lisjak D; Klepp J; Kohlbrecher J; Čopič M Soft Matter; 2019 Jul; 15(27):5412-5420. PubMed ID: 31241639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]