BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33929839)

  • 1. Engineering the Plant Microenvironment To Facilitate Plant-Growth-Promoting Microbe Association.
    Zvinavashe AT; Mardad I; Mhada M; Kouisni L; Marelli B
    J Agric Food Chem; 2021 Nov; 69(45):13270-13285. PubMed ID: 33929839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term effect of epigenetic modification in plant-microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process.
    Chen C; Wang M; Zhu J; Tang Y; Zhang H; Zhao Q; Jing M; Chen Y; Xu X; Jiang J; Shen Z
    Microbiome; 2022 Feb; 10(1):36. PubMed ID: 35209943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application.
    Saad MM; Eida AA; Hirt H
    J Exp Bot; 2020 Jun; 71(13):3878-3901. PubMed ID: 32157287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria.
    Emmanuel OC; Babalola OO
    Microbiol Res; 2020 Oct; 239():126569. PubMed ID: 32771873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering.
    Afridi MS; Fakhar A; Kumar A; Ali S; Medeiros FHV; Muneer MA; Ali H; Saleem M
    Microbiol Res; 2022 Dec; 265():127199. PubMed ID: 36137486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling.
    Bukhat S; Imran A; Javaid S; Shahid M; Majeed A; Naqqash T
    Microbiol Res; 2020 Sep; 238():126486. PubMed ID: 32464574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt-Tolerant Compatible Microbial Inoculants Modulate Physio-Biochemical Responses Enhance Plant Growth, Zn Biofortification and Yield of Wheat Grown in Saline-Sodic Soil.
    Singh UB; Malviya D; Singh S; Singh P; Ghatak A; Imran M; Rai JP; Singh RK; Manna MC; Sharma AK; Saxena AK
    Int J Environ Res Public Health; 2021 Sep; 18(18):. PubMed ID: 34574855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices.
    Das PP; Singh KR; Nagpure G; Mansoori A; Singh RP; Ghazi IA; Kumar A; Singh J
    Environ Res; 2022 Nov; 214(Pt 1):113821. PubMed ID: 35810815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.
    Qin Y; Druzhinina IS; Pan X; Yuan Z
    Biotechnol Adv; 2016 Nov; 34(7):1245-1259. PubMed ID: 27587331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Home-based microbial solution to boost crop growth in low-fertility soil.
    Jiang M; Delgado-Baquerizo M; Yuan MM; Ding J; Yergeau E; Zhou J; Crowther TW; Liang Y
    New Phytol; 2023 Jul; 239(2):752-765. PubMed ID: 37149890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.
    Kong Z; Glick BR
    Adv Microb Physiol; 2017; 71():97-132. PubMed ID: 28760324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience.
    Arif I; Batool M; Schenk PM
    Trends Biotechnol; 2020 Dec; 38(12):1385-1396. PubMed ID: 32451122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Two
    Shi H; Lu L; Ye J; Shi L
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health.
    Orozco-Mosqueda MDC; Fadiji AE; Babalola OO; Glick BR; Santoyo G
    Microbiol Res; 2022 Oct; 263():127137. PubMed ID: 35905581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing Drought Stress in Plants by Encapsulating Plant Growth-Promoting Bacteria with Polysaccharides.
    Saberi Riseh R; Ebrahimi-Zarandi M; Gholizadeh Vazvani M; Skorik YA
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.
    Vejan P; Abdullah R; Khadiran T; Ismail S; Nasrulhaq Boyce A
    Molecules; 2016 Apr; 21(5):. PubMed ID: 27136521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity.
    Zvinavashe AT; Lim E; Sun H; Marelli B
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25555-25561. PubMed ID: 31776251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils.
    Kong Z; Wu Z; Glick BR; He S; Huang C; Wu L
    Ecotoxicol Environ Saf; 2019 Nov; 183():109504. PubMed ID: 31421537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inside the root microbiome: bacterial root endophytes and plant growth promotion.
    Gaiero JR; McCall CA; Thompson KA; Day NJ; Best AS; Dunfield KE
    Am J Bot; 2013 Sep; 100(9):1738-50. PubMed ID: 23935113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant growth-promoting bacteria as inoculants in agricultural soils.
    Souza Rd; Ambrosini A; Passaglia LM
    Genet Mol Biol; 2015 Dec; 38(4):401-19. PubMed ID: 26537605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.