BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33929855)

  • 1. Calculating Transfer Entropy from Variance-Covariance Matrices Provides Insight into Allosteric Communication in ERK2.
    Garcia Michel LR; Keirns CD; Ahlbrecht BC; Barr DA
    J Chem Theory Comput; 2021 May; 17(5):3168-3177. PubMed ID: 33929855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of domain closure for the autoactivation of ERK2.
    Barr D; Oashi T; Burkhard K; Lucius S; Samadani R; Zhang J; Shapiro P; MacKerell AD; van der Vaart A
    Biochemistry; 2011 Sep; 50(37):8038-48. PubMed ID: 21842857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Dynamic Insights into the Mechanism of Allosteric Signal Transmission in ERK2-Mediated MKP3 Activation.
    Lu C; Liu X; Zhang CS; Gong H; Wu JW; Wang ZX
    Biochemistry; 2017 Nov; 56(46):6165-6175. PubMed ID: 29077400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causality, transfer entropy, and allosteric communication landscapes in proteins with harmonic interactions.
    Hacisuleyman A; Erman B
    Proteins; 2017 Jun; 85(6):1056-1064. PubMed ID: 28241380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.
    Hacisuleyman A; Erman B
    PLoS Comput Biol; 2017 Jan; 13(1):e1005319. PubMed ID: 28095404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the specificity of a docking interaction between JNK1 and the scaffolding protein JIP1.
    Yan C; Kaoud T; Lee S; Dalby KN; Ren P
    J Phys Chem B; 2011 Feb; 115(6):1491-502. PubMed ID: 21261310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinase Activation by Small Conformational Changes.
    Lopez ED; Burastero O; Arcon JP; Defelipe LA; Ahn NG; Marti MA; Turjanski AG
    J Chem Inf Model; 2020 Feb; 60(2):821-832. PubMed ID: 31714778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of a MAPK•substrate complex in an active conformation: a computational and experimental approach.
    Lee S; Warthaka M; Yan C; Kaoud TS; Piserchio A; Ghose R; Ren P; Dalby KN
    PLoS One; 2011 Apr; 6(4):e18594. PubMed ID: 21494553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2.
    Eblen ST; Catling AD; Assanah MC; Weber MJ
    Mol Cell Biol; 2001 Jan; 21(1):249-59. PubMed ID: 11113199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring post-translational modification of proteins with allosteric ribozymes.
    Vaish NK; Dong F; Andrews L; Schweppe RE; Ahn NG; Blatt L; Seiwert SD
    Nat Biotechnol; 2002 Aug; 20(8):810-5. PubMed ID: 12118241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.
    Kalescky R; Zhou H; Liu J; Tao P
    PLoS Comput Biol; 2016 Apr; 12(4):e1004893. PubMed ID: 27115535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK.
    Mace PD; Wallez Y; Egger MF; Dobaczewska MK; Robinson H; Pasquale EB; Riedl SJ
    Nat Commun; 2013; 4():1681. PubMed ID: 23575685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a cytoplasmic-retention sequence in ERK2.
    Rubinfeld H; Hanoch T; Seger R
    J Biol Chem; 1999 Oct; 274(43):30349-52. PubMed ID: 10521408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive activation of extracellular signal-regulated kinase 2 by synergistic point mutations.
    Emrick MA; Hoofnagle AN; Miller AS; Ten Eyck LF; Ahn NG
    J Biol Chem; 2001 Dec; 276(49):46469-79. PubMed ID: 11591711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation, response and entropy approaches to allosteric behaviors: a critical comparison on the ubiquitin case.
    Cecconi F; Costantini G; Guardiani C; Baldovin M; Vulpiani A
    Phys Biol; 2023 Jul; 20(5):. PubMed ID: 37364583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining docking interactions on ERK2 with modular peptide substrates.
    Lee S; Warthaka M; Yan C; Kaoud TS; Ren P; Dalby KN
    Biochemistry; 2011 Nov; 50(44):9500-10. PubMed ID: 21955038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT.
    LeVine MV; Weinstein H
    PLoS Comput Biol; 2014 May; 10(5):e1003603. PubMed ID: 24785005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a C-terminal region that is required for the nuclear translocation of ERK2 by passive diffusion.
    Shibayama S; Shibata-Seita R; Miura K; Kirino Y; Takishima K
    J Biol Chem; 2002 Oct; 277(40):37777-82. PubMed ID: 12149268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen exchange solvent protection by an ATP analogue reveals conformational changes in ERK2 upon activation.
    Lee T; Hoofnagle AN; Resing KA; Ahn NG
    J Mol Biol; 2005 Oct; 353(3):600-12. PubMed ID: 16185715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinctive communication networks in inactive states of β
    Sogunmez N; Akten ED
    Proteins; 2020 Nov; 88(11):1458-1471. PubMed ID: 32530095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.