These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33929855)

  • 1. Calculating Transfer Entropy from Variance-Covariance Matrices Provides Insight into Allosteric Communication in ERK2.
    Garcia Michel LR; Keirns CD; Ahlbrecht BC; Barr DA
    J Chem Theory Comput; 2021 May; 17(5):3168-3177. PubMed ID: 33929855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of domain closure for the autoactivation of ERK2.
    Barr D; Oashi T; Burkhard K; Lucius S; Samadani R; Zhang J; Shapiro P; MacKerell AD; van der Vaart A
    Biochemistry; 2011 Sep; 50(37):8038-48. PubMed ID: 21842857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Dynamic Insights into the Mechanism of Allosteric Signal Transmission in ERK2-Mediated MKP3 Activation.
    Lu C; Liu X; Zhang CS; Gong H; Wu JW; Wang ZX
    Biochemistry; 2017 Nov; 56(46):6165-6175. PubMed ID: 29077400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causality, transfer entropy, and allosteric communication landscapes in proteins with harmonic interactions.
    Hacisuleyman A; Erman B
    Proteins; 2017 Jun; 85(6):1056-1064. PubMed ID: 28241380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.
    Hacisuleyman A; Erman B
    PLoS Comput Biol; 2017 Jan; 13(1):e1005319. PubMed ID: 28095404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the specificity of a docking interaction between JNK1 and the scaffolding protein JIP1.
    Yan C; Kaoud T; Lee S; Dalby KN; Ren P
    J Phys Chem B; 2011 Feb; 115(6):1491-502. PubMed ID: 21261310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinase Activation by Small Conformational Changes.
    Lopez ED; Burastero O; Arcon JP; Defelipe LA; Ahn NG; Marti MA; Turjanski AG
    J Chem Inf Model; 2020 Feb; 60(2):821-832. PubMed ID: 31714778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of a MAPK•substrate complex in an active conformation: a computational and experimental approach.
    Lee S; Warthaka M; Yan C; Kaoud TS; Piserchio A; Ghose R; Ren P; Dalby KN
    PLoS One; 2011 Apr; 6(4):e18594. PubMed ID: 21494553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2.
    Eblen ST; Catling AD; Assanah MC; Weber MJ
    Mol Cell Biol; 2001 Jan; 21(1):249-59. PubMed ID: 11113199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring post-translational modification of proteins with allosteric ribozymes.
    Vaish NK; Dong F; Andrews L; Schweppe RE; Ahn NG; Blatt L; Seiwert SD
    Nat Biotechnol; 2002 Aug; 20(8):810-5. PubMed ID: 12118241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.
    Kalescky R; Zhou H; Liu J; Tao P
    PLoS Comput Biol; 2016 Apr; 12(4):e1004893. PubMed ID: 27115535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK.
    Mace PD; Wallez Y; Egger MF; Dobaczewska MK; Robinson H; Pasquale EB; Riedl SJ
    Nat Commun; 2013; 4():1681. PubMed ID: 23575685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a cytoplasmic-retention sequence in ERK2.
    Rubinfeld H; Hanoch T; Seger R
    J Biol Chem; 1999 Oct; 274(43):30349-52. PubMed ID: 10521408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive activation of extracellular signal-regulated kinase 2 by synergistic point mutations.
    Emrick MA; Hoofnagle AN; Miller AS; Ten Eyck LF; Ahn NG
    J Biol Chem; 2001 Dec; 276(49):46469-79. PubMed ID: 11591711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation, response and entropy approaches to allosteric behaviors: a critical comparison on the ubiquitin case.
    Cecconi F; Costantini G; Guardiani C; Baldovin M; Vulpiani A
    Phys Biol; 2023 Jul; 20(5):. PubMed ID: 37364583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining docking interactions on ERK2 with modular peptide substrates.
    Lee S; Warthaka M; Yan C; Kaoud TS; Ren P; Dalby KN
    Biochemistry; 2011 Nov; 50(44):9500-10. PubMed ID: 21955038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT.
    LeVine MV; Weinstein H
    PLoS Comput Biol; 2014 May; 10(5):e1003603. PubMed ID: 24785005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a C-terminal region that is required for the nuclear translocation of ERK2 by passive diffusion.
    Shibayama S; Shibata-Seita R; Miura K; Kirino Y; Takishima K
    J Biol Chem; 2002 Oct; 277(40):37777-82. PubMed ID: 12149268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen exchange solvent protection by an ATP analogue reveals conformational changes in ERK2 upon activation.
    Lee T; Hoofnagle AN; Resing KA; Ahn NG
    J Mol Biol; 2005 Oct; 353(3):600-12. PubMed ID: 16185715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinctive communication networks in inactive states of β
    Sogunmez N; Akten ED
    Proteins; 2020 Nov; 88(11):1458-1471. PubMed ID: 32530095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.