These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33929957)
1. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. Muckley MJ; Riemenschneider B; Radmanesh A; Kim S; Jeong G; Ko J; Jun Y; Shin H; Hwang D; Mostapha M; Arberet S; Nickel D; Ramzi Z; Ciuciu P; Starck JL; Teuwen J; Karkalousos D; Zhang C; Sriram A; Huang Z; Yakubova N; Lui YW; Knoll F IEEE Trans Med Imaging; 2021 Sep; 40(9):2306-2317. PubMed ID: 33929957 [TBL] [Abstract][Full Text] [Related]
2. Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Knoll F; Murrell T; Sriram A; Yakubova N; Zbontar J; Rabbat M; Defazio A; Muckley MJ; Sodickson DK; Zitnick CL; Recht MP Magn Reson Med; 2020 Dec; 84(6):3054-3070. PubMed ID: 32506658 [TBL] [Abstract][Full Text] [Related]
3. Accelerating image reconstruction for multi-contrast MRI based on Y-Net3. Cai X; Hou X; Sun R; Chang X; Zhu H; Jia S; Nie S J Xray Sci Technol; 2023; 31(4):797-810. PubMed ID: 37248943 [TBL] [Abstract][Full Text] [Related]
4. Projection-Based cascaded U-Net model for MR image reconstruction. Aghabiglou A; Eksioglu EM Comput Methods Programs Biomed; 2021 Aug; 207():106151. PubMed ID: 34052771 [TBL] [Abstract][Full Text] [Related]
5. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling. Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D; Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724 [TBL] [Abstract][Full Text] [Related]
6. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model. Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585 [TBL] [Abstract][Full Text] [Related]
7. Subsampled brain MRI reconstruction by generative adversarial neural networks. Shaul R; David I; Shitrit O; Riklin Raviv T Med Image Anal; 2020 Oct; 65():101747. PubMed ID: 32593933 [TBL] [Abstract][Full Text] [Related]
8. A k-space-to-image reconstruction network for MRI using recurrent neural network. Oh C; Kim D; Chung JY; Han Y; Park H Med Phys; 2021 Jan; 48(1):193-203. PubMed ID: 33128235 [TBL] [Abstract][Full Text] [Related]
9. fastMRI+, Clinical pathology annotations for knee and brain fully sampled magnetic resonance imaging data. Zhao R; Yaman B; Zhang Y; Stewart R; Dixon A; Knoll F; Huang Z; Lui YW; Hansen MS; Lungren MP Sci Data; 2022 Apr; 9(1):152. PubMed ID: 35383186 [TBL] [Abstract][Full Text] [Related]
10. FastMRI Prostate: A Publicly Available, Biparametric MRI Dataset to Advance Machine Learning for Prostate Cancer Imaging. Tibrewala R; Dutt T; Tong A; Ginocchio L; Keerthivasan MB; Baete SH; Chopra S; Lui YW; Sodickson DK; Chandarana H; Johnson PM ArXiv; 2023 Apr; ():. PubMed ID: 37131871 [TBL] [Abstract][Full Text] [Related]
11. HIWDNet: A hybrid image-wavelet domain network for fast magnetic resonance image reconstruction. Tong C; Pang Y; Wang Y Comput Biol Med; 2022 Dec; 151(Pt A):105947. PubMed ID: 36334363 [TBL] [Abstract][Full Text] [Related]
12. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans. Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J Elife; 2022 Dec; 11():. PubMed ID: 36546674 [TBL] [Abstract][Full Text] [Related]
13. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks. Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061 [TBL] [Abstract][Full Text] [Related]
14. Deep learning-based single image super-resolution for low-field MR brain images. de Leeuw den Bouter ML; Ippolito G; O'Reilly TPA; Remis RF; van Gijzen MB; Webb AG Sci Rep; 2022 Apr; 12(1):6362. PubMed ID: 35430586 [TBL] [Abstract][Full Text] [Related]
15. Automatic brain MRI motion artifact detection based on end-to-end deep learning is similarly effective as traditional machine learning trained on image quality metrics. Vakli P; Weiss B; Szalma J; Barsi P; Gyuricza I; Kemenczky P; Somogyi E; Nárai Á; Gál V; Hermann P; Vidnyánszky Z Med Image Anal; 2023 Aug; 88():102850. PubMed ID: 37263108 [TBL] [Abstract][Full Text] [Related]
16. Qualitative and Quantitative Evaluation of Blob-Based Time-of-Flight PET Image Reconstruction in Hybrid Brain PET/MR Imaging. Leemans EL; Kotasidis F; Wissmeyer M; Garibotto V; Zaidi H Mol Imaging Biol; 2015 Oct; 17(5):704-13. PubMed ID: 25634260 [TBL] [Abstract][Full Text] [Related]
17. Transfer learning in deep neural network based under-sampled MR image reconstruction. Arshad M; Qureshi M; Inam O; Omer H Magn Reson Imaging; 2021 Feb; 76():96-107. PubMed ID: 32980504 [TBL] [Abstract][Full Text] [Related]
18. MR-self Noise2Noise: self-supervised deep learning-based image quality improvement of submillimeter resolution 3D MR images. Jung W; Lee HS; Seo M; Nam Y; Choi Y; Shin NY; Ahn KJ; Kim BS; Jang J Eur Radiol; 2023 Apr; 33(4):2686-2698. PubMed ID: 36378250 [TBL] [Abstract][Full Text] [Related]
19. HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction. Geng C; Jiang M; Fang X; Li Y; Jin G; Chen A; Liu F Comput Methods Programs Biomed; 2023 Apr; 232():107440. PubMed ID: 36881983 [TBL] [Abstract][Full Text] [Related]
20. Accelerating susceptibility-weighted imaging with deep learning by complex-valued convolutional neural network (ComplexNet): validation in clinical brain imaging. Duan C; Xiong Y; Cheng K; Xiao S; Lyu J; Wang C; Bian X; Zhang J; Zhang D; Chen L; Zhou X; Lou X Eur Radiol; 2022 Aug; 32(8):5679-5687. PubMed ID: 35182203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]