These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 33930098)
1. The type of blood used to feed Aedes aegypti females affects their cuticular and internal free fatty acid (FFA) profiles. Kaczmarek A; Wrońska AK; Boguś MI; Kazek M; Gliniewicz A; Mikulak E; Matławska M PLoS One; 2021; 16(4):e0251100. PubMed ID: 33930098 [TBL] [Abstract][Full Text] [Related]
2. The influence of different sources of blood meals on the physiology of Aedes aegypti harboring Wolbachia wMel: mouse blood as an alternative for mosquito rearing. Farnesi LC; Carvalho FD; Lacerda APC; Moreira LA; Bruno RV Parasit Vectors; 2021 Jan; 14(1):21. PubMed ID: 33407798 [TBL] [Abstract][Full Text] [Related]
3. Determination of cuticular and internal fatty acids of Chorthippus brunneus males and females using HPLC-LLSD and GC-MS. Gołębiowski M; Cerkowniak M; Ostachowska A; Boguś MI; Stepnowski P Biomed Chromatogr; 2016 Aug; 30(8):1318-23. PubMed ID: 26799146 [TBL] [Abstract][Full Text] [Related]
4. Metamorphosis-related changes in the free fatty acid profiles of Sarcophaga (Liopygia) argyrostoma (Robineau-Desvoidy, 1830). Kaczmarek A; Wrońska AK; Kazek M; Boguś MI Sci Rep; 2020 Oct; 10(1):17337. PubMed ID: 33060748 [TBL] [Abstract][Full Text] [Related]
5. Free fatty acids in the cuticular and internal lipids of Calliphora vomitoria and their antimicrobial activity. Gołębiowski M; Cerkowniak M; Boguś MI; Włóka E; Dawgul M; Kamysz W; Stepnowski P J Insect Physiol; 2013 Apr; 59(4):416-29. PubMed ID: 23419415 [TBL] [Abstract][Full Text] [Related]
6. Comparison of free fatty acids composition of cuticular lipids of Calliphora vicina larvae and pupae. Gołębiowski M Lipids; 2012 Oct; 47(10):1001-9. PubMed ID: 22869098 [TBL] [Abstract][Full Text] [Related]
7. Membrane feeding of dengue patient's blood as a substitute for direct skin feeding in studying Aedes-dengue virus interaction. Tan CH; Wong PS; Li MZ; Yang HT; Chong CS; Lee LK; Yuan S; Leo YS; Ng LC; Lye DC Parasit Vectors; 2016 Apr; 9():211. PubMed ID: 27083158 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of a simple polytetrafluoroethylene (PTFE)-based membrane for blood-feeding of malaria and dengue fever vectors in the laboratory. Siria DJ; Batista EPA; Opiyo MA; Melo EF; Sumaye RD; Ngowo HS; Eiras AE; Okumu FO Parasit Vectors; 2018 Apr; 11(1):236. PubMed ID: 29642937 [TBL] [Abstract][Full Text] [Related]
9. Plant nutrient quality impacts survival and reproductive fitness of the dengue vector Aedes aegypti. Nyasembe VO; Tchouassi DP; Muturi MN; Pirk CWW; Sole CL; Torto B Parasit Vectors; 2021 Jan; 14(1):4. PubMed ID: 33397448 [TBL] [Abstract][Full Text] [Related]
10. A blood-free protein meal supporting oogenesis in the Asian tiger mosquito, Aedes albopictus (Skuse). Pitts RJ J Insect Physiol; 2014 May; 64():1-6. PubMed ID: 24607650 [TBL] [Abstract][Full Text] [Related]
12. Vector competence of Virginia mosquitoes for Zika and Cache Valley viruses. Chan KK; Auguste AJ; Brewster CC; Paulson SL Parasit Vectors; 2020 Apr; 13(1):188. PubMed ID: 32276649 [TBL] [Abstract][Full Text] [Related]
13. Differential outcomes of Zika virus infection in Aedes aegypti orally challenged with infectious blood meals and infectious protein meals. Huang YS; Lyons AC; Hsu WW; Park SL; Higgs S; Vanlandingham DL PLoS One; 2017; 12(8):e0182386. PubMed ID: 28796799 [TBL] [Abstract][Full Text] [Related]
14. Australian Aedes aegypti mosquitoes are susceptible to infection with a highly divergent and sylvatic strain of dengue virus type 2 but are unlikely to transmit it. Pickering P; Hugo LE; Devine GJ; Aaskov JG; Liu W Parasit Vectors; 2020 May; 13(1):240. PubMed ID: 32393378 [TBL] [Abstract][Full Text] [Related]
15. A scoping review on the use of different blood sources and components in the artificial membrane feeding system and its effects on blood-feeding and fecundity rate of Aedes aegypti. Suresh Y; Azil AH; Abdullah SR PLoS One; 2024; 19(1):e0295961. PubMed ID: 38252615 [TBL] [Abstract][Full Text] [Related]
16. Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells. Parry R; Asgari S J Virol; 2018 Sep; 92(17):. PubMed ID: 29950416 [TBL] [Abstract][Full Text] [Related]
17. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. Fraser JE; De Bruyne JT; Iturbe-Ormaetxe I; Stepnell J; Burns RL; Flores HA; O'Neill SL PLoS Pathog; 2017 Dec; 13(12):e1006751. PubMed ID: 29216317 [TBL] [Abstract][Full Text] [Related]
18. Feasibility of feeding Aedes aegypti mosquitoes on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. Long KC; Sulca J; Bazan I; Astete H; Jaba HL; Siles C; Kocher C; Vilcarromero S; Schwarz J; Escobedo-Vargas KS; Castro-Llanos F; Angulo L; Flores G; Ramal-Asayag C; Halsey ES; Hontz RD; Paz-Soldan VA; Scott TW; Lambrechts L; Morrison AC PLoS Negl Trop Dis; 2019 Feb; 13(2):e0007116. PubMed ID: 30753180 [TBL] [Abstract][Full Text] [Related]
19. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. Vasantha-Srinivasan P; Thanigaivel A; Edwin ES; Ponsankar A; Senthil-Nathan S; Selin-Rani S; Kalaivani K; Hunter WB; Duraipandiyan V; Al-Dhabi NA Environ Sci Pollut Res Int; 2018 Apr; 25(11):10434-10446. PubMed ID: 28852982 [TBL] [Abstract][Full Text] [Related]
20. Impacts of Hurricanes Irma and Maria on Barrera R; Felix G; Acevedo V; Amador M; Rodriguez D; Rivera L; Gonzalez O; Nazario N; Ortiz M; Muñoz-Jordan JL; Waterman SH; Hemme RR Am J Trop Med Hyg; 2019 Jun; 100(6):1413-1420. PubMed ID: 30963992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]