These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33930127)

  • 1. The growing repertoire of genetic tools for dissecting chlamydial pathogenesis.
    Banerjee A; Nelson DE
    Pathog Dis; 2021 May; 79(5):. PubMed ID: 33930127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Coming of Age Story: Chlamydia in the Post-Genetic Era.
    Hooppaw AJ; Fisher DJ
    Infect Immun; 2015 Dec; 84(3):612-21. PubMed ID: 26667838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome organization and genomics in
    Luu LDW; Kasimov V; Phillips S; Myers GSA; Jelocnik M
    Front Cell Infect Microbiol; 2023; 13():1178736. PubMed ID: 37287464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia trachomatis - the agent.
    Cevenini R; Donati M; Sambri V
    Best Pract Res Clin Obstet Gynaecol; 2002 Dec; 16(6):761-73. PubMed ID: 12473280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in genetic manipulation of
    Wan W; Li D; Li D; Jiao J
    Front Immunol; 2023; 14():1209879. PubMed ID: 37449211
    [No Abstract]   [Full Text] [Related]  

  • 7. The ClpX and ClpP2 Orthologs of Chlamydia trachomatis Perform Discrete and Essential Functions in Organism Growth and Development.
    Wood NA; Blocker AM; Seleem MA; Conda-Sheridan M; Fisher DJ; Ouellette SP
    mBio; 2020 Sep; 11(5):. PubMed ID: 32873765
    [No Abstract]   [Full Text] [Related]  

  • 8. A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum.
    Fields KA; Bodero MD; Scanlon KR; Jewett TJ; Wolf K
    Infect Immun; 2022 Dec; 90(12):e0045322. PubMed ID: 36350146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination.
    Brothwell JA; Muramatsu MK; Toh E; Rockey DD; Putman TE; Barta ML; Hefty PS; Suchland RJ; Nelson DE
    J Bacteriol; 2016 Aug; 198(15):2131-9. PubMed ID: 27246568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial Characterization of the Two ClpP Paralogs of
    Wood NA; Chung KY; Blocker AM; Rodrigues de Almeida N; Conda-Sheridan M; Fisher DJ; Ouellette SP
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.
    LaBrie SD; Dimond ZE; Harrison KS; Baid S; Wickstrum J; Suchland RJ; Hefty PS
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTL0511 from Chlamydia trachomatis Is a Type 2C Protein Phosphatase with Broad Substrate Specificity.
    Claywell JE; Fisher DJ
    J Bacteriol; 2016 Jul; 198(13):1827-1836. PubMed ID: 27114464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydia cell biology and pathogenesis.
    Elwell C; Mirrashidi K; Engel J
    Nat Rev Microbiol; 2016 Jun; 14(6):385-400. PubMed ID: 27108705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early Transcriptional Landscapes of
    Hayward RJ; Marsh JW; Humphrys MS; Huston WM; Myers GSA
    Front Cell Infect Microbiol; 2019; 9():392. PubMed ID: 31803632
    [No Abstract]   [Full Text] [Related]  

  • 17. Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability.
    Lowden NM; Yeruva L; Johnson CM; Bowlin AK; Fisher DJ
    BMC Res Notes; 2015 Oct; 8():570. PubMed ID: 26471806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the Protein Phosphatase CppA Alters Development of Chlamydia trachomatis.
    Claywell JE; Matschke LM; Plunkett KN; Fisher DJ
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Dynamic, Ring-Forming Bactofilin Critical for Maintaining Cell Size in the Obligate Intracellular Bacterium Chlamydia trachomatis.
    Brockett MR; Lee J; Cox JV; Liechti GW; Ouellette SP
    Infect Immun; 2021 Jul; 89(8):e0020321. PubMed ID: 33941579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Effects of Small Molecule Inhibitors on the Intracellular Chlamydia Infection.
    Muñoz KJ; Tan M; Sütterlin C
    mBio; 2022 Aug; 13(4):e0107622. PubMed ID: 35703434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.