These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 33930246)

  • 21. Enhanced mechanical and electrical properties of heteroscaled hydrogels infused with aqueous-dispersible hybrid nanofibers.
    Kim S; Cha C
    Biofabrication; 2019 Dec; 12(1):015020. PubMed ID: 31675730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytocompatible, Injectable, and Electroconductive Soft Adhesives with Hybrid Covalent/Noncovalent Dynamic Network.
    Xu Y; Patsis PA; Hauser S; Voigt D; Rothe R; Günther M; Cui M; Yang X; Wieduwild R; Eckert K; Neinhuis C; Akbar TF; Minev IR; Pietzsch J; Zhang Y
    Adv Sci (Weinh); 2019 Aug; 6(15):1802077. PubMed ID: 31406658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing.
    Deng Z; Hu T; Lei Q; He J; Ma PX; Guo B
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6796-6808. PubMed ID: 30673228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-healing conductive hydrogels based on alginate, gelatin and polypyrrole serve as a repairable circuit and a mechanical sensor.
    Ren K; Cheng Y; Huang C; Chen R; Wang Z; Wei J
    J Mater Chem B; 2019 Sep; 7(37):5704-5712. PubMed ID: 31482926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A self-healing magneto-responsive nanocellulose ferrogel and flexible soft strain sensor.
    Heidarian P; Kouzani AZ
    Int J Biol Macromol; 2023 Apr; 234():123822. PubMed ID: 36822286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conductive Hydrogels-A Novel Material: Recent Advances and Future Perspectives.
    Liu K; Wei S; Song L; Liu H; Wang T
    J Agric Food Chem; 2020 Jul; 68(28):7269-7280. PubMed ID: 32574052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering.
    Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering.
    Mousavi A; Vahdat S; Baheiraei N; Razavi M; Norahan MH; Baharvand H
    ACS Biomater Sci Eng; 2021 Jan; 7(1):55-82. PubMed ID: 33320525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic plant-derived polysaccharide-based hydrogels.
    Heidarian P; Kouzani AZ; Kaynak A; Paulino M; Nasri-Nasrabadi B; Zolfagharian A; Varley R
    Carbohydr Polym; 2020 Mar; 231():115743. PubMed ID: 31888824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive Tissue Support.
    Shin M; Song KH; Burrell JC; Cullen DK; Burdick JA
    Adv Sci (Weinh); 2019 Oct; 6(20):1901229. PubMed ID: 31637164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
    Navaei A; Saini H; Christenson W; Sullivan RT; Ros R; Nikkhah M
    Acta Biomater; 2016 Sep; 41():133-46. PubMed ID: 27212425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Development of Conductive Hydrogels for Tissue Engineering: Review and Perspective.
    Gao C; Song S; Lv Y; Huang J; Zhang Z
    Macromol Biosci; 2022 Aug; 22(8):e2200051. PubMed ID: 35472125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics.
    Zhang K; Feng Q; Fang Z; Gu L; Bian L
    Chem Rev; 2021 Sep; 121(18):11149-11193. PubMed ID: 34189903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications.
    Ding X; Wang Y
    J Mater Chem B; 2017 Feb; 5(5):887-906. PubMed ID: 29062484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release.
    Qu J; Liang Y; Shi M; Guo B; Gao Y; Yin Z
    Int J Biol Macromol; 2019 Nov; 140():255-264. PubMed ID: 31421175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polypyrrole/Agarose-based electronically conductive and reversibly restorable hydrogel.
    Hur J; Im K; Kim SW; Kim J; Chung DY; Kim TH; Jo KH; Hahn JH; Bao Z; Hwang S; Park N
    ACS Nano; 2014 Oct; 8(10):10066-76. PubMed ID: 25256570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conducting Polymers for Tissue Engineering.
    Guo B; Ma PX
    Biomacromolecules; 2018 Jun; 19(6):1764-1782. PubMed ID: 29684268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration.
    Riley L; Schirmer L; Segura T
    Curr Opin Biotechnol; 2019 Dec; 60():1-8. PubMed ID: 30481603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.