These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33930546)

  • 21. A Robust CRISPR Interference Gene Repression System in Pseudomonas.
    Tan SZ; Reisch CR; Prather KLJ
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311279
    [No Abstract]   [Full Text] [Related]  

  • 22. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants.
    Pan C; Wu X; Markel K; Malzahn AA; Kundagrami N; Sretenovic S; Zhang Y; Cheng Y; Shih PM; Qi Y
    Nat Plants; 2021 Jul; 7(7):942-953. PubMed ID: 34168320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial production of mevalonate.
    Wang CH; Hou J; Deng HK; Wang LJ
    J Biotechnol; 2023 Jun; 370():1-11. PubMed ID: 37209831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction.
    Fontana J; Voje WE; Zalatan JG; Carothers JM
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):481-490. PubMed ID: 29740742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of a novel dual-inducible duet-expression system for gene (over)expression in Pseudomonas putida.
    Gauttam R; Mukhopadhyay A; Singer SW
    Plasmid; 2020 Jul; 110():102514. PubMed ID: 32504628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-based metabolic pathway engineering.
    Zhao D; Zhu X; Zhou H; Sun N; Wang T; Bi C; Zhang X
    Metab Eng; 2021 Jan; 63():148-159. PubMed ID: 33152516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A versatile, high-efficiency platform for CRISPR-based gene activation.
    Heidersbach AJ; Dorighi KM; Gomez JA; Jacobi AM; Haley B
    Nat Commun; 2023 Feb; 14(1):902. PubMed ID: 36804928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.
    Cress BF; Toparlak ÖD; Guleria S; Lebovich M; Stieglitz JT; Englaender JA; Jones JA; Linhardt RJ; Koffas MA
    ACS Synth Biol; 2015 Sep; 4(9):987-1000. PubMed ID: 25822415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic biology: UBER - a portable system for cross-species genetic engineering.
    Osório J
    Nat Rev Genet; 2015 Sep; 16(9):500. PubMed ID: 26260260
    [No Abstract]   [Full Text] [Related]  

  • 32. A portable expression resource for engineering cross-species genetic circuits and pathways.
    Kushwaha M; Salis HM
    Nat Commun; 2015 Jul; 6():7832. PubMed ID: 26184393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida.
    Marqués S; Gallegos MT; Manzanera M; Holtel A; Timmis KN; Ramos JL
    J Bacteriol; 1998 Jun; 180(11):2889-94. PubMed ID: 9603877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Histone-like Nucleoid-Structuring Protein (H-NS) Paralogue StpA Activates the Type I-E CRISPR-Cas System against Natural Transformation in Escherichia coli.
    Sun D; Mao X; Fei M; Chen Z; Zhu T; Qiu J
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32385085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate.
    Yang J; Im Y; Kim TH; Lee MJ; Cho S; Na JG; Lee J; Oh BK
    Enzyme Microb Technol; 2020 Jan; 132():109437. PubMed ID: 31731966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broad-Host-Range ProUSER Vectors Enable Fast Characterization of Inducible Promoters and Optimization of p-Coumaric Acid Production in Pseudomonas putida KT2440.
    Calero P; Jensen SI; Nielsen AT
    ACS Synth Biol; 2016 Jul; 5(7):741-53. PubMed ID: 27092814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of dual-inducible duet-expression vectors for tunable gene expression control and CRISPR interference-based gene repression in Pseudomonas putida KT2440.
    Gauttam R; Mukhopadhyay A; Simmons BA; Singer SW
    Microb Biotechnol; 2021 Nov; 14(6):2659-2678. PubMed ID: 34009716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors.
    Hernandez-Arranz S; Perez-Gil J; Marshall-Sabey D; Rodriguez-Concepcion M
    Microb Cell Fact; 2019 Sep; 18(1):152. PubMed ID: 31500633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A SEVA-based, CRISPR-Cas3-assisted genome engineering approach for
    Lammens E-M; Volke DC; Schroven K; Voet M; Kerremans A; Lavigne R; Hendrix H
    Microbiol Spectr; 2023 Dec; 11(6):e0270723. PubMed ID: 37975669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.