These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33930564)

  • 21. GENERALIZED SIDELOBE CANCELLER FOR MAGNETOENCEPHALOGRAPHY ARRAYS.
    Mosher JC; Hämäläinen MS; Pantazis D; Hui HB; Burgess RC; Leahy RM
    Proc IEEE Int Symp Biomed Imaging; 2009 Aug; 2009():149-152. PubMed ID: 20234848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multistage minimum variance distortionless response beamformer for noise reduction.
    Pan C; Chen J; Benesty J
    J Acoust Soc Am; 2015 Mar; 137(3):1377-88. PubMed ID: 25786950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving Hybrid CTC/Attention Architecture for Agglutinative Language Speech Recognition.
    Ren Z; Yolwas N; Slamu W; Cao R; Wang H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-stage hybrid neural beamformer for multi-channel speech enhancement.
    Kuang K; Yang F; Li J; Yang J
    J Acoust Soc Am; 2023 Jun; 153(6):3378. PubMed ID: 37342887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.
    Schafer PB; Jin DZ
    Neural Comput; 2014 Mar; 26(3):523-56. PubMed ID: 24320849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The benefit of combining a deep neural network architecture with ideal ratio mask estimation in computational speech segregation to improve speech intelligibility.
    Bentsen T; May T; Kressner AA; Dau T
    PLoS One; 2018; 13(5):e0196924. PubMed ID: 29763459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mandarin Electrolaryngeal Speech Recognition Based on WaveNet-CTC.
    Qian Z; Wang L; Zhang S; Liu C; Niu H
    J Speech Lang Hear Res; 2019 Jul; 62(7):2203-2212. PubMed ID: 31200617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition.
    Lozano-Diez A; Zazo R; Toledano DT; Gonzalez-Rodriguez J
    PLoS One; 2017; 12(8):e0182580. PubMed ID: 28796806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Robot Speech Recognition Using Biomimetic Binaural Sound Source Localization.
    Davila-Chacon J; Liu J; Wermter S
    IEEE Trans Neural Netw Learn Syst; 2019 Jan; 30(1):138-150. PubMed ID: 29993561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiexpert automatic speech recognition using acoustic and myoelectric signals.
    Chan AD; Englehart KB; Hudgins B; Lovely DF
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):676-85. PubMed ID: 16602574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cluster-Based Pairwise Contrastive Loss for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Matrix sentence intelligibility prediction using an automatic speech recognition system.
    Schädler MR; Warzybok A; Hochmuth S; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():100-7. PubMed ID: 26383042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial speech detection for binaural hearing aids using deep phoneme classifiers.
    Kayser H; Hermansky H; Meyer BT
    Acta Acust (2020); 2022; 6():. PubMed ID: 36159631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual projection generalized sidelobe canceller based on mixed signal subspace for ultrasound imaging.
    Li X; Wang P; Du T; Li Q; Luo C; Wang C
    J Acoust Soc Am; 2022 Aug; 152(2):921. PubMed ID: 36050163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic Speech Recognition Performance Improvement for Mandarin Based on Optimizing Gain Control Strategy.
    Wang D; Wei Y; Zhang K; Ji D; Wang Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Speech Vision: An End-to-End Deep Learning-Based Dysarthric Automatic Speech Recognition System.
    Shahamiri SR
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():852-861. PubMed ID: 33929963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. End-to-end keyword search system based on attention mechanism and energy scorer for low resource languages.
    Zhao Z; Zhang WQ
    Neural Netw; 2021 Jul; 139():326-334. PubMed ID: 33878611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-microphone Complex Spectral Mapping for Utterance-wise and Continuous Speech Separation.
    Wang ZQ; Wang P; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2021; 29():2001-2014. PubMed ID: 34212067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Speech Recognition Method Based on Domain-Specific Datasets and Confidence Decision Networks.
    Dong Z; Ding Q; Zhai W; Zhou M
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustic landmarks contain more information about the phone string than other frames for automatic speech recognition with deep neural network acoustic model.
    He D; Lim BP; Yang X; Hasegawa-Johnson M; Chen D
    J Acoust Soc Am; 2018 Jun; 143(6):3207. PubMed ID: 29960420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.