These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 33930685)
1. Electrolytic transesterification of waste frying oil using Na Fereidooni L; Abbaspourrad A; Enayati M Waste Manag; 2021 May; 127():48-62. PubMed ID: 33930685 [TBL] [Abstract][Full Text] [Related]
2. Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: Optimization and E-metrics studies. Sahani S; Roy T; Sharma YC Waste Manag; 2020 May; 108():189-201. PubMed ID: 32360999 [TBL] [Abstract][Full Text] [Related]
3. Biodiesel Production from Citrillus colocynthis Oil Using Enzymatic Based Catalytic Reaction and Characterization Studies. Nehdi IA; Sbihi HM; Blidi LE; Rashid U; Tan CP; Al-Resayes SI Protein Pept Lett; 2018; 25(2):164-170. PubMed ID: 28240158 [TBL] [Abstract][Full Text] [Related]
4. Low-cost biodiesel production using waste oil and catalyst. Talavari R; Hosseini S; Moradi GR Waste Manag Res; 2021 Feb; 39(2):250-259. PubMed ID: 32597342 [TBL] [Abstract][Full Text] [Related]
5. Semi-pilot scale production of biodiesel from waste frying oil by genetically improved fungal lipases. Ahmed HM; Mohamed SS; Amin HA; Moharam ME; El-Bendary MA; Hawash SI Prep Biochem Biotechnol; 2020; 50(9):915-924. PubMed ID: 32496968 [TBL] [Abstract][Full Text] [Related]
6. Production of biodiesel from Helmi M; Hemmati A; Tahvildari K J Environ Health Sci Eng; 2022 Jun; 20(1):187-204. PubMed ID: 35669796 [TBL] [Abstract][Full Text] [Related]
7. Biodiesel production from palm oil using calcined waste animal bone as catalyst. Obadiah A; Swaroopa GA; Kumar SV; Jeganathan KR; Ramasubbu A Bioresour Technol; 2012 Jul; 116():512-6. PubMed ID: 22595096 [TBL] [Abstract][Full Text] [Related]
8. Enhanced biodiesel production from waste cooking palm oil, with NaOH-loaded Calcined fish bones as the catalyst. Chinglenthoiba C; Das A; Vandana S Environ Sci Pollut Res Int; 2020 May; 27(13):15925-15930. PubMed ID: 32207016 [TBL] [Abstract][Full Text] [Related]
9. Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock. Azócar L; Ciudad G; Heipieper HJ; Muñoz R; Navia R J Biosci Bioeng; 2010 Jun; 109(6):609-14. PubMed ID: 20471601 [TBL] [Abstract][Full Text] [Related]
11. Hierarchical Zeolites as Catalysts for Biodiesel Production from Waste Frying Oils to Overcome Mass Transfer Limitations. Fawaz EG; Salam DA; S Rigolet S; Daou TJ Molecules; 2021 Aug; 26(16):. PubMed ID: 34443467 [TBL] [Abstract][Full Text] [Related]
12. Conversion of waste frying oil into biodiesel using recoverable nanocatalyst based on magnetic graphene oxide supported ternary mixed metal oxide nanoparticles. Rezania S; Kamboh MA; Arian SS; Al-Dhabi NA; Arasu MV; Esmail GA; Kumar Yadav K Bioresour Technol; 2021 Mar; 323():124561. PubMed ID: 33373800 [TBL] [Abstract][Full Text] [Related]
13. The modeling and analysis of transesterification reaction conditions in the selection of optimal biodiesel yield and viscosity. Gülüm M; Yesilyurt MK; Bilgin A Environ Sci Pollut Res Int; 2020 Apr; 27(10):10351-10366. PubMed ID: 31939010 [TBL] [Abstract][Full Text] [Related]
14. Process dynamic investigations and emission analyses of biodiesel produced using Sr-Ce mixed metal oxide heterogeneous catalyst. Banerjee S; Sahani S; Chandra Sharma Y J Environ Manage; 2019 Oct; 248():109218. PubMed ID: 31319198 [TBL] [Abstract][Full Text] [Related]
15. Design and development of a highly efficient reusable zeolite impregnated ZnAl Bouhaj Y; Sair S; Ait Ousaleh H; Amadine O; Maati H; Zahouily M; Faik A; El Bouari A Environ Sci Pollut Res Int; 2023 Aug; 30(37):86773-86789. PubMed ID: 37410326 [TBL] [Abstract][Full Text] [Related]
16. Optimization of sodium loading on zeolite support for catalyzed transesterification of triolein with methanol. Wang YY; Chou HY; Chen BH; Lee DJ Bioresour Technol; 2013 Oct; 145():248-53. PubMed ID: 23374749 [TBL] [Abstract][Full Text] [Related]
17. Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value. Azócar L; Ciudad G; Heipieper HJ; Muñoz R; Navia R J Biosci Bioeng; 2011 Dec; 112(6):583-9. PubMed ID: 21889401 [TBL] [Abstract][Full Text] [Related]
18. Sodium titanate nanotubes for efficient transesterification of oils into biodiesel. Zaki AH; Naeim AA; El-Dek SI Environ Sci Pollut Res Int; 2019 Dec; 26(36):36388-36400. PubMed ID: 31724127 [TBL] [Abstract][Full Text] [Related]
19. Biodiesel Production by Methanolysis of Rapeseed Oil-Influence of SiO Szkudlarek Ł; Chałupka-Śpiewak K; Maniukiewicz W; Nowosielska M; Szynkowska-Jóźwik MI; Mierczyński P Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612389 [TBL] [Abstract][Full Text] [Related]
20. Nano-sulfated zirconia catalyzed biodiesel production from tannery waste sheep fat. Booramurthy VK; Kasimani R; Pandian S; Ragunathan B Environ Sci Pollut Res Int; 2020 Jun; 27(17):20598-20605. PubMed ID: 32036538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]