These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 33930768)
1. Phosphate-solubilizing bacterium Burkholderia sp. strain N3 facilitates the regulation of gene expression and improves tomato seedling growth under cadmium stress. Zhang J; Xiao Q; Wang P Ecotoxicol Environ Saf; 2021 Jul; 217():112268. PubMed ID: 33930768 [TBL] [Abstract][Full Text] [Related]
2. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. He LY; Chen ZJ; Ren GD; Zhang YF; Qian M; Sheng XF Ecotoxicol Environ Saf; 2009 Jul; 72(5):1343-8. PubMed ID: 19368973 [TBL] [Abstract][Full Text] [Related]
3. [Effects of Zhang YH; Liu YM; Wang CR; Liu YP; Pang J; Huang YC; Liu ZQ; Zhang CB Huan Jing Ke Xue; 2022 Apr; 43(4):2142-2150. PubMed ID: 35393838 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome sequencing analysis of gene expression in phosphate-solubilizing bacterium 'N3' and grafted watermelon plants coping with toxicity induced by cadmium. Zhang J; Xia R; Tao Z Environ Sci Pollut Res Int; 2024 Aug; 31(38):50513-50528. PubMed ID: 39096459 [TBL] [Abstract][Full Text] [Related]
5. The effects of dark septate endophyte (DSE) inoculation on tomato seedlings under Zn and Cd stress. Zhu L; Li T; Wang C; Zhang X; Xu L; Xu R; Zhao Z Environ Sci Pollut Res Int; 2018 Dec; 25(35):35232-35241. PubMed ID: 30341750 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Jiang CY; Sheng XF; Qian M; Wang QY Chemosphere; 2008 May; 72(2):157-64. PubMed ID: 18348897 [TBL] [Abstract][Full Text] [Related]
7. Regulation of cadmium toxicity in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging. Khan MY; Prakash V; Yadav V; Chauhan DK; Prasad SM; Ramawat N; Singh VP; Tripathi DK; Sharma S Plant Physiol Biochem; 2019 Sep; 142():193-201. PubMed ID: 31301530 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. Leng Y; Li Y; Wen Y; Zhao H; Wang Q; Li SW Ecotoxicol Environ Saf; 2020 Nov; 204():111098. PubMed ID: 32798749 [TBL] [Abstract][Full Text] [Related]
9. Effect of 4-chloro-2-methylphenoxy acetic acid on tomato gene expression and rhizosphere bacterial communities under inoculation with phosphate-solubilizing bacteria. Zhang J; Guo T; Xiao Q; Wang P; Tian H J Hazard Mater; 2021 Aug; 416():125767. PubMed ID: 33845264 [TBL] [Abstract][Full Text] [Related]
10. Exogenous NO mediated the detoxification pathway of tomato seedlings under different stress of Cu and Cd. Wang YJ; Hu MM; Cui XM; Lou YH; Zhuge YP Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):4199-4207. PubMed ID: 30584749 [TBL] [Abstract][Full Text] [Related]
11. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. Sheng X; He L; Wang Q; Ye H; Jiang C J Hazard Mater; 2008 Jun; 155(1-2):17-22. PubMed ID: 18082946 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. Gu L; Zhao M; Ge M; Zhu S; Cheng B; Li X Ecotoxicol Environ Saf; 2019 Dec; 186():109744. PubMed ID: 31627093 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Mitra S; Pramanik K; Ghosh PK; Soren T; Sarkar A; Dey RS; Pandey S; Maiti TK Microbiol Res; 2018 May; 210():12-25. PubMed ID: 29625654 [TBL] [Abstract][Full Text] [Related]
15. Phosphate-solubilizing bacteria abate cadmium absorption and restore the rhizospheric bacterial community composition of grafted watermelon plants. Zhang J; Wang P; Tao Z; Tian H; Guo T J Hazard Mater; 2022 Sep; 438():129563. PubMed ID: 35999731 [TBL] [Abstract][Full Text] [Related]
16. [Screening and identification of an efficient phosphate-solubilizing Lyu J; Yu C Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):2923-2934. PubMed ID: 33345493 [TBL] [Abstract][Full Text] [Related]
17. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium. Wang C; Huang Y; Yang X; Xue W; Zhang X; Zhang Y; Pang J; Liu Y; Liu Z Chemosphere; 2020 Aug; 252():126603. PubMed ID: 32240860 [TBL] [Abstract][Full Text] [Related]
18. Unraveling the mutualistic interaction between endophytic Curvularia lunata CSL1 and tomato to mitigate cadmium (Cd) toxicity via transcriptomic insights. Asaf S; Jan R; Khan MA; Lubna ; Khan AL; Asif S; Bilal S; Ahmad W; Waqas M; Kim KM; Al-Harrasi A; Lee IJ Sci Total Environ; 2023 Feb; 861():160542. PubMed ID: 36493827 [TBL] [Abstract][Full Text] [Related]
19. Revealing mechanistic basis of ameliorating detrimental effects of cadmium in cherry tomatoes by exogenous application of melatonin and brassinosteroids. Huang L; Liu X; Liu Y; Tanveer M; Chen W; Fu W; Wang Q; Guo Y; Shabala S Ecotoxicol Environ Saf; 2024 Sep; 283():116768. PubMed ID: 39067078 [TBL] [Abstract][Full Text] [Related]
20. Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates. Wang Y; Zhang W; Liu W; Ahammed GJ; Wen W; Guo S; Shu S; Sun J BMC Plant Biol; 2021 Jan; 21(1):48. PubMed ID: 33461504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]