These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33930823)

  • 1. Different pyrolysis kinetics and product distribution of municipal and livestock manure sewage sludge.
    Lee S; Kim YM; Siddiqui MZ; Park YK
    Environ Pollut; 2021 Sep; 285():117197. PubMed ID: 33930823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Municipal sewage sludge energetic conversion as a tool for environmental sustainability: production of innovative biofuels and biochar.
    Trabelsi ABH; Zaafouri K; Friaa A; Abidi S; Naoui S; Jamaaoui F
    Environ Sci Pollut Res Int; 2021 Feb; 28(8):9777-9791. PubMed ID: 33156501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inherent minerals on sewage sludge pyrolysis: Product characteristics, kinetics and thermodynamics.
    Tang S; Zheng C; Zhang Z
    Waste Manag; 2018 Oct; 80():175-185. PubMed ID: 30454998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics evaluation and thermal decomposition characteristics of co-pyrolysis of municipal sewage sludge and hazelnut shell.
    Zhao B; Xu X; Li H; Chen X; Zeng F
    Bioresour Technol; 2018 Jan; 247():21-29. PubMed ID: 28946090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-pyrolysis of sewage sludge and manure.
    Ruiz-Gómez N; Quispe V; Ábrego J; Atienza-Martínez M; Murillo MB; Gea G
    Waste Manag; 2017 Jan; 59():211-221. PubMed ID: 27843025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics, kinetics and thermal decomposition characteristics of sewage sludge during slow pyrolysis.
    Mphahlele K; Matjie RH; Osifo PO
    J Environ Manage; 2021 Apr; 284():112006. PubMed ID: 33535126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P; Ledakowicz S
    Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H
    Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of thermokinetic behaviour of tannery sludge in slow pyrolysis process through artificial neural network.
    Khan A; Ali I; Naqvi SR; AlMohamadi H; Shahbaz M; Ali AM; Shahzad K
    Chemosphere; 2023 Oct; 337():139226. PubMed ID: 37379972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network.
    Naqvi SR; Hameed Z; Tariq R; Taqvi SA; Ali I; Niazi MBK; Noor T; Hussain A; Iqbal N; Shahbaz M
    Waste Manag; 2019 Feb; 85():131-140. PubMed ID: 30803566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ultrasonic treatment on the pyrolysis characteristics and kinetics of waste activated sludge.
    Jia H; Liu B; Zhang X; Chen J; Ren W
    Environ Res; 2020 Apr; 183():109250. PubMed ID: 32088608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of pyrolysis gasification of livestock manure, food wastewater, and their co-digested sludge.
    Oh DY; Kim D; Park KY
    Chemosphere; 2024 Jun; 357():142007. PubMed ID: 38631497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process design and optimization on self-sustaining pyrolysis and carbonization of municipal sewage sludge.
    Zhou A; Wang X; Yu S; Deng S; Tan H; Mikulčić H
    Waste Manag; 2023 Mar; 159():125-133. PubMed ID: 36753855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study for fluidized bed pyrolysis of textile dyeing sludge and municipal sewage sludge.
    Liu Y; Ran C; Siyal AA; Song Y; Jiang Z; Dai J; Chtaeva P; Fu J; Ao W; Deng Z; Zhang T
    J Hazard Mater; 2020 Sep; 396():122619. PubMed ID: 32361128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolytic characteristics of sewage sludge.
    Thipkhunthod P; Meeyoo V; Rangsunvigit P; Kitiyanan B; Siemanond K; Rirksomboon T
    Chemosphere; 2006 Aug; 64(6):955-62. PubMed ID: 16483633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous heavy metal immobilization and antibiotics removal during synergetic treatment of sewage sludge and pig manure.
    Li C; Xie S; Wang Y; Pan X; Yu G; Zhang Y
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30323-30332. PubMed ID: 32458305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of methylated naphthalenes in sludge-derived pyrogenic carbonaceous materials.
    Frišták V; Laughinghouse HD; Packová A; Graser M; Soja G
    Chemosphere; 2019 Feb; 217():456-462. PubMed ID: 30439658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis derived char from municipal and industrial sludge: Impact of organic decomposition and inorganic accumulation on the fuel characteristics of char.
    Chanaka Udayanga WD; Veksha A; Giannis A; Lim TT
    Waste Manag; 2019 Jan; 83():131-141. PubMed ID: 30514459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution.
    Agar DA; Kwapinska M; Leahy JJ
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35874-35882. PubMed ID: 29484618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Faecal sludge pyrolysis: Understanding the relationships between organic composition and thermal decomposition.
    Krueger BC; Fowler GD; Templeton MR; Septien S
    J Environ Manage; 2021 Nov; 298():113456. PubMed ID: 34364246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.