BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33930877)

  • 1. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting.
    Huh J; Moon YW; Park J; Atala A; Yoo JJ; Lee SJ
    Biofabrication; 2021 May; 13(3):. PubMed ID: 33930877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization.
    Duong VT; Lin CC
    Macromol Biosci; 2023 Dec; 23(12):e2300213. PubMed ID: 37536347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtissue-Based Bioink as a Chondrocyte Microshelter for DLP Bioprinting.
    Xie X; Wu S; Mou S; Guo N; Wang Z; Sun J
    Adv Healthc Mater; 2022 Nov; 11(22):e2201877. PubMed ID: 36085440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ethylene glycol)-Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting.
    Kim MH; Lin CC
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2737-2746. PubMed ID: 36608274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of digital light processing-based multi-material bioprinting for fabrication of heterogeneous tissue constructs.
    Su H; Lu B; Li M; Yang X; Qin M; Wu Y
    Biomater Sci; 2023 Sep; 11(19):6663-6673. PubMed ID: 37614165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital light processing-based 3D bioprinting of κ-carrageenan hydrogels for engineering cell-loaded tissue scaffolds.
    Kumari S; Mondal P; Chatterjee K
    Carbohydr Polym; 2022 Aug; 290():119508. PubMed ID: 35550782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital Light Processing Bioprinting Advances for Microtissue Models.
    Goodarzi Hosseinabadi H; Dogan E; Miri AK; Ionov L
    ACS Biomater Sci Eng; 2022 Apr; 8(4):1381-1395. PubMed ID: 35357144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications.
    Zhuang P; Ng WL; An J; Chua CK; Tan LP
    PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet bioprinting of acellular and cell-laden structures at high-resolutions.
    Kunwar P; Aryal U; Poudel A; Fougnier D; Geffert ZJ; Xie R; Li Z; Soman P
    Biofabrication; 2024 May; 16(3):. PubMed ID: 38749419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.
    Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF
    Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin.
    Rajput M; Mondal P; Yadav P; Chatterjee K
    Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible Light-Based 4D-Bioprinted Tissue Scaffold.
    Gugulothu SB; Chatterjee K
    ACS Macro Lett; 2023 Apr; 12(4):494-502. PubMed ID: 37002946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting.
    Shi H; Li Y; Xu K; Yin J
    Mater Today Bio; 2023 Dec; 23():100799. PubMed ID: 37766893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting.
    Mao Q; Wang Y; Li Y; Juengpanich S; Li W; Chen M; Yin J; Fu J; Cai X
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110625. PubMed ID: 32228893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Spin Resonance Probe Incorporation into Bioinks Permits Longitudinal Oxygen Imaging of Bioprinted Constructs.
    Sarvari S; McGee D; O'Connell R; Tseytlin O; Bobko AA; Tseytlin M
    Mol Imaging Biol; 2024 Jun; 26(3):511-524. PubMed ID: 38038860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting.
    Bedell ML; Torres AL; Hogan KJ; Wang Z; Wang B; Melchiorri AJ; Grande-Allen KJ; Mikos AG
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.