These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33930877)

  • 1. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting.
    Huh J; Moon YW; Park J; Atala A; Yoo JJ; Lee SJ
    Biofabrication; 2021 May; 13(3):. PubMed ID: 33930877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinting of stromal cells-laden artificial cornea based on visible light-crosslinkable bioinks forming multilength networks.
    Lee GW; Chandrasekharan A; Roy S; Thamarappalli A; Mahaling B; Lee H; Seong KY; Ghosh S; Yang SY
    Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38507802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization.
    Duong VT; Lin CC
    Macromol Biosci; 2023 Dec; 23(12):e2300213. PubMed ID: 37536347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtissue-Based Bioink as a Chondrocyte Microshelter for DLP Bioprinting.
    Xie X; Wu S; Mou S; Guo N; Wang Z; Sun J
    Adv Healthc Mater; 2022 Nov; 11(22):e2201877. PubMed ID: 36085440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(ethylene glycol)-Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting.
    Kim MH; Lin CC
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2737-2746. PubMed ID: 36608274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of digital light processing-based multi-material bioprinting for fabrication of heterogeneous tissue constructs.
    Su H; Lu B; Li M; Yang X; Qin M; Wu Y
    Biomater Sci; 2023 Sep; 11(19):6663-6673. PubMed ID: 37614165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital light processing-based 3D bioprinting of κ-carrageenan hydrogels for engineering cell-loaded tissue scaffolds.
    Kumari S; Mondal P; Chatterjee K
    Carbohydr Polym; 2022 Aug; 290():119508. PubMed ID: 35550782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital Light Processing Bioprinting Advances for Microtissue Models.
    Goodarzi Hosseinabadi H; Dogan E; Miri AK; Ionov L
    ACS Biomater Sci Eng; 2022 Apr; 8(4):1381-1395. PubMed ID: 35357144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications.
    Zhuang P; Ng WL; An J; Chua CK; Tan LP
    PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet bioprinting of acellular and cell-laden structures at high-resolutions.
    Kunwar P; Aryal U; Poudel A; Fougnier D; Geffert ZJ; Xie R; Li Z; Soman P
    Biofabrication; 2024 May; 16(3):. PubMed ID: 38749419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.
    Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF
    Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin.
    Rajput M; Mondal P; Yadav P; Chatterjee K
    Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible Light-Based 4D-Bioprinted Tissue Scaffold.
    Gugulothu SB; Chatterjee K
    ACS Macro Lett; 2023 Apr; 12(4):494-502. PubMed ID: 37002946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting.
    Shi H; Li Y; Xu K; Yin J
    Mater Today Bio; 2023 Dec; 23():100799. PubMed ID: 37766893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting.
    Mao Q; Wang Y; Li Y; Juengpanich S; Li W; Chen M; Yin J; Fu J; Cai X
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110625. PubMed ID: 32228893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron Spin Resonance Probe Incorporation into Bioinks Permits Longitudinal Oxygen Imaging of Bioprinted Constructs.
    Sarvari S; McGee D; O'Connell R; Tseytlin O; Bobko AA; Tseytlin M
    Mol Imaging Biol; 2024 Jun; 26(3):511-524. PubMed ID: 38038860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.