BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33930877)

  • 21. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting.
    Bedell ML; Torres AL; Hogan KJ; Wang Z; Wang B; Melchiorri AJ; Grande-Allen KJ; Mikos AG
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D bioprinting by reinforced bioink based on photocurable interpenetrating networks for cartilage tissue engineering.
    Shen J; Song W; Liu J; Peng X; Tan Z; Xu Y; Liu S; Ren L
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127671. PubMed ID: 37884244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution.
    Schwartz R; Malpica M; Thompson GL; Miri AK
    J Mech Behav Biomed Mater; 2020 Mar; 103():103524. PubMed ID: 31785543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection-based 3D bioprinting.
    Sun Y; Yu K; Nie J; Sun M; Fu J; Wang H; He Y
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 32640425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-material digital light processing bioprinting of hydrogel-based microfluidic chips.
    Bhusal A; Dogan E; Nguyen HA; Labutina O; Nieto D; Khademhosseini A; Miri AK
    Biofabrication; 2021 Nov; 14(1):. PubMed ID: 34614486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visible light-based 3D bioprinted composite scaffolds of κ-carrageenan for bone tissue engineering applications.
    Kumari S; Mondal P; Tyeb S; Chatterjee K
    J Mater Chem B; 2024 Feb; 12(7):1926-1936. PubMed ID: 38314524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of 3D bioprinting of periodontal ligament cells.
    Thattaruparambil Raveendran N; Vaquette C; Meinert C; Samuel Ipe D; Ivanovski S
    Dent Mater; 2019 Dec; 35(12):1683-1694. PubMed ID: 31601443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compensating the cell-induced light scattering effect in light-based bioprinting using deep learning.
    Guan J; You S; Xiang Y; Schimelman J; Alido J; Ma X; Tang M; Chen S
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34798629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aqueous Two-Phase Emulsion Bioresin for Facile One-Step 3D Microgel-Based Bioprinting.
    Wang Q; Karadas Ö; Backman O; Wang L; Näreoja T; Rosenholm JM; Xu C; Wang X
    Adv Healthc Mater; 2023 Jul; 12(19):e2203243. PubMed ID: 36929700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Jammed Micro-Flake Hydrogel for Four-Dimensional Living Cell Bioprinting.
    Ding A; Jeon O; Cleveland D; Gasvoda KL; Wells D; Lee SJ; Alsberg E
    Adv Mater; 2022 Apr; 34(15):e2109394. PubMed ID: 35065000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biopolymeric corneal lenticules by digital light processing based bioprinting: a dynamic substitute for corneal transplant.
    Bhutani U; Dey N; Chowdhury SK; Waghmare N; Mahapatra RD; Selvakumar K; Chandru A; Bhowmick T; Agrawal P
    Biomed Mater; 2024 Mar; 19(3):. PubMed ID: 38471165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanocomposite bioinks for 3D bioprinting.
    Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC
    Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues.
    You S; Xiang Y; Hwang HH; Berry DB; Kiratitanaporn W; Guan J; Yao E; Tang M; Zhong Z; Ma X; Wangpraseurt D; Sun Y; Lu TY; Chen S
    Sci Adv; 2023 Feb; 9(8):eade7923. PubMed ID: 36812321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithography-Based 3D Bioprinting and Bioinks for Bone Repair and Regeneration.
    Liang R; Gu Y; Wu Y; Bunpetch V; Zhang S
    ACS Biomater Sci Eng; 2021 Mar; 7(3):806-816. PubMed ID: 33715367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D bioprinted silk fibroin hydrogels for tissue engineering.
    Kim SH; Hong H; Ajiteru O; Sultan MT; Lee YJ; Lee JS; Lee OJ; Lee H; Park HS; Choi KY; Lee JS; Ju HW; Hong IS; Park CH
    Nat Protoc; 2021 Dec; 16(12):5484-5532. PubMed ID: 34716451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D bioprinting of tissue constructs employing dual crosslinking of decellularized extracellular matrix hydrogel.
    Yeleswarapu S; Dash A; Chameettachal S; Pati F
    Biomater Adv; 2023 Sep; 152():213494. PubMed ID: 37307772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting.
    Göckler T; Haase S; Kempter X; Pfister R; Maciel BR; Grimm A; Molitor T; Willenbacher N; Schepers U
    Adv Healthc Mater; 2021 Jul; 10(14):e2100206. PubMed ID: 34145799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.