These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. High proportion of leukemic stem cells at diagnosis is correlated with unfavorable prognosis in childhood acute myeloid leukemia. Witte KE; Ahlers J; Schäfer I; André M; Kerst G; Scheel-Walter HG; Schwarze CP; Pfeiffer M; Lang P; Handgretinger R; Ebinger M Pediatr Hematol Oncol; 2011 Mar; 28(2):91-9. PubMed ID: 21214408 [TBL] [Abstract][Full Text] [Related]
4. CD34 Zeijlemaker W; Grob T; Meijer R; Hanekamp D; Kelder A; Carbaat-Ham JC; Oussoren-Brockhoff YJM; Snel AN; Veldhuizen D; Scholten WJ; Maertens J; Breems DA; Pabst T; Manz MG; van der Velden VHJ; Slomp J; Preijers F; Cloos J; van de Loosdrecht AA; Löwenberg B; Valk PJM; Jongen-Lavrencic M; Ossenkoppele GJ; Schuurhuis GJ Leukemia; 2019 May; 33(5):1102-1112. PubMed ID: 30542144 [TBL] [Abstract][Full Text] [Related]
5. Immunoprofiling of leukemic stem cells CD34+/CD38-/CD123+ delineate FLT3/ITD-positive clones. Al-Mawali A; Gillis D; Lewis I J Hematol Oncol; 2016 Jul; 9(1):61. PubMed ID: 27465508 [TBL] [Abstract][Full Text] [Related]
6. Relationship between CD34/CD38 and side population (SP) defined leukemia stem cell compartments in acute myeloid leukemia. Moshaver B; Wouters RF; Kelder A; Ossenkoppele GJ; Westra GAH; Kwidama Z; Rutten AR; Kaspers GJL; Zweegman S; Cloos J; Schuurhuis GJ Leuk Res; 2019 Jun; 81():27-34. PubMed ID: 31002948 [TBL] [Abstract][Full Text] [Related]
7. Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. Terwijn M; Zeijlemaker W; Kelder A; Rutten AP; Snel AN; Scholten WJ; Pabst T; Verhoef G; Löwenberg B; Zweegman S; Ossenkoppele GJ; Schuurhuis GJ PLoS One; 2014; 9(9):e107587. PubMed ID: 25244440 [TBL] [Abstract][Full Text] [Related]
9. High GPR56 surface expression correlates with a leukemic stem cell gene signature in CD34-positive AML. Daga S; Rosenberger A; Quehenberger F; Krisper N; Prietl B; Reinisch A; Zebisch A; Sill H; Wölfler A Cancer Med; 2019 Apr; 8(4):1771-1778. PubMed ID: 30848055 [TBL] [Abstract][Full Text] [Related]
10. Determination of P-glycoprotein, MDR-related protein 1, breast cancer resistance protein, and lung-resistance protein expression in leukemic stem cells of acute myeloid leukemia. de Figueiredo-Pontes LL; Pintão MC; Oliveira LC; Dalmazzo LF; Jácomo RH; Garcia AB; Falcão RP; Rego EM Cytometry B Clin Cytom; 2008 May; 74(3):163-8. PubMed ID: 18200595 [TBL] [Abstract][Full Text] [Related]
11. Ginsenoside Rg1 Inhibits Cell Proliferation and Induces Markers of Cell Senescence in CD34+CD38- Leukemia Stem Cells Derived from KG1α Acute Myeloid Leukemia Cells by Activating the Sirtuin 1 (SIRT1)/Tuberous Sclerosis Complex 2 (TSC2) Signaling Pathway. Tang YL; Zhang CG; Liu H; Zhou Y; Wang YP; Li Y; Han YJ; Wang CL Med Sci Monit; 2020 Feb; 26():e918207. PubMed ID: 32037392 [TBL] [Abstract][Full Text] [Related]
13. Normal hematopoietic stem cells within the AML bone marrow have a distinct and higher ALDH activity level than co-existing leukemic stem cells. Schuurhuis GJ; Meel MH; Wouters F; Min LA; Terwijn M; de Jonge NA; Kelder A; Snel AN; Zweegman S; Ossenkoppele GJ; Smit L PLoS One; 2013; 8(11):e78897. PubMed ID: 24244383 [TBL] [Abstract][Full Text] [Related]
14. Proteomic profiling identifies distinct protein patterns in acute myelogenous leukemia CD34+CD38- stem-like cells. Kornblau SM; Qutub A; Yao H; York H; Qiu YH; Graber D; Ravandi F; Cortes J; Andreeff M; Zhang N; Coombes KR PLoS One; 2013; 8(10):e78453. PubMed ID: 24223100 [TBL] [Abstract][Full Text] [Related]
15. FISH+CD34+CD38- cells detected in newly diagnosed acute myeloid leukemia patients can predict the clinical outcome. Wang L; Gao L; Xu S; Gong S; Chen L; Lü S; Chen J; Qiu H; Xu X; Ni X; Song X; Zhang W; Yang J; Liu M; Hu X; Wang J J Hematol Oncol; 2013 Nov; 6(1):85. PubMed ID: 24517186 [TBL] [Abstract][Full Text] [Related]
16. A clinically relevant population of leukemic CD34(+)CD38(-) cells in acute myeloid leukemia. Gerber JM; Smith BD; Ngwang B; Zhang H; Vala MS; Morsberger L; Galkin S; Collector MI; Perkins B; Levis MJ; Griffin CA; Sharkis SJ; Borowitz MJ; Karp JE; Jones RJ Blood; 2012 Apr; 119(15):3571-7. PubMed ID: 22262762 [TBL] [Abstract][Full Text] [Related]
17. Delineation of target expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML. Herrmann H; Sadovnik I; Eisenwort G; Rülicke T; Blatt K; Herndlhofer S; Willmann M; Stefanzl G; Baumgartner S; Greiner G; Schulenburg A; Mueller N; Rabitsch W; Bilban M; Hoermann G; Streubel B; Vallera DA; Sperr WR; Valent P Blood Adv; 2020 Oct; 4(20):5118-5132. PubMed ID: 33085758 [TBL] [Abstract][Full Text] [Related]
18. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Herrmann H; Blatt K; Shi J; Gleixner KV; Cerny-Reiterer S; Müllauer L; Vakoc CR; Sperr WR; Horny HP; Bradner JE; Zuber J; Valent P Oncotarget; 2012 Dec; 3(12):1588-99. PubMed ID: 23249862 [TBL] [Abstract][Full Text] [Related]
19. Impact of Leukemia Stem Cells Phenotype Expression on Response to Induction Therapy in Acute Myeloid Leukemia Patients. Almohsen F; Al-Mudallal SS Cardiovasc Hematol Disord Drug Targets; 2020; 20(2):145-151. PubMed ID: 31438833 [TBL] [Abstract][Full Text] [Related]
20. Acute myeloid leukemia stem cell markers in prognosis and targeted therapy: potential impact of BMI-1, TIM-3 and CLL-1. Darwish NH; Sudha T; Godugu K; Elbaz O; Abdelghaffar HA; Hassan EE; Mousa SA Oncotarget; 2016 Sep; 7(36):57811-57820. PubMed ID: 27506934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]