These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33931454)

  • 61. Backward Cherenkov radiation emitted by polariton solitons in a microcavity wire.
    Skryabin DV; Kartashov YV; Egorov OA; Sich M; Chana JK; Tapia Rodriguez LE; Walker PM; Clarke E; Royall B; Skolnick MS; Krizhanovskii DN
    Nat Commun; 2017 Nov; 8(1):1554. PubMed ID: 29146904
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale.
    Zhang Z; Peng T; Nie X; Agarwal GS; Scully MO
    Light Sci Appl; 2022 Sep; 11(1):274. PubMed ID: 36104344
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Coherent light scattering from a telecom C-band quantum dot.
    Wells L; Müller T; Stevenson RM; Skiba-Szymanska J; Ritchie DA; Shields AJ
    Nat Commun; 2023 Dec; 14(1):8371. PubMed ID: 38102132
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nonmonotonic quantum-to-classical transition in multiparticle interference.
    Ra YS; Tichy MC; Lim HT; Kwon O; Mintert F; Buchleitner A; Kim YH
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1227-31. PubMed ID: 23297196
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Superresolution microscopy with quantum emitters.
    Schwartz O; Levitt JM; Tenne R; Itzhakov S; Deutsch Z; Oron D
    Nano Lett; 2013; 13(12):5832-6. PubMed ID: 24195698
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Anomalous transport of a classical wave-particle entity in a tilted potential.
    Valani RN
    Phys Rev E; 2022 Jan; 105(1):L012101. PubMed ID: 35193237
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Generating single microwave photons in a circuit.
    Houck AA; Schuster DI; Gambetta JM; Schreier JA; Johnson BR; Chow JM; Frunzio L; Majer J; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7160):328-31. PubMed ID: 17882217
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Simultaneous entanglement swapping of multiple orbital angular momentum states of light.
    Zhang Y; Agnew M; Roger T; Roux FS; Konrad T; Faccio D; Leach J; Forbes A
    Nat Commun; 2017 Sep; 8(1):632. PubMed ID: 28935969
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A complementarity experiment with an interferometer at the quantum-classical boundary.
    Bertet P; Osnaghi S; Rauschenbeutel A; Nogues G; Auffeves A; Brune M; Raimond JM; Haroche S
    Nature; 2001 May; 411(6834):166-70. PubMed ID: 11346787
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Photon retention in coherently excited nitrogen ions.
    Yao J; Wang L; Chen J; Wan Y; Zhang Z; Zhang F; Qiao L; Yu S; Fu B; Zhao Z; Wu C; Yakovlev VV; Yuan L; Chen X; Cheng Y
    Sci Bull (Beijing); 2021 Aug; 66(15):1511-1517. PubMed ID: 36654279
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Two-electron interference in a coherent beam.
    Kodama T; Osakabe N
    Microscopy (Oxf); 2013 Jun; 62 Suppl 1():S119-29. PubMed ID: 23549452
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predictability, distinguishability, and entanglement.
    Qureshi T
    Opt Lett; 2021 Feb; 46(3):492-495. PubMed ID: 33528392
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach.
    Budich JC; Trauzettel B
    Nanotechnology; 2010 Jul; 21(27):274001. PubMed ID: 20571188
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Quantum sensing of strongly coupled light-matter systems using free electrons.
    Karnieli A; Tsesses S; Yu R; Rivera N; Zhao Z; Arie A; Fan S; Kaminer I
    Sci Adv; 2023 Jan; 9(1):eadd2349. PubMed ID: 36598994
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cherenkov Radiation Control via Self-accelerating Wave-packets.
    Hu Y; Li Z; Wetzel B; Morandotti R; Chen Z; Xu J
    Sci Rep; 2017 Aug; 7(1):8695. PubMed ID: 28821743
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A semiconductor source of triggered entangled photon pairs.
    Stevenson RM; Young RJ; Atkinson P; Cooper K; Ritchie DA; Shields AJ
    Nature; 2006 Jan; 439(7073):179-82. PubMed ID: 16407947
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optical control of entanglement and coherence for polar molecules in pendular states.
    Zhang ZY; Liu JM; Hu Z; Wang Y
    Opt Express; 2019 Sep; 27(19):26588-26599. PubMed ID: 31674537
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Energetic Cost of Measurements Using Quantum, Coherent, and Thermal Light.
    Linpeng X; Bresque L; Maffei M; Jordan AN; Auffèves A; Murch KW
    Phys Rev Lett; 2022 Jun; 128(22):220506. PubMed ID: 35714239
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optical vortex knots - one photon at a time.
    Tempone-Wiltshire SJ; Johnstone SP; Helmerson K
    Sci Rep; 2016 Apr; 6():24463. PubMed ID: 27087642
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Quantum-inspired optical coherence tomography using classical light in a single-photon counting regime.
    Dąbrowska AM; Kolenderska SM; Szlachetka J; Słowik K; Kolenderski P
    Opt Lett; 2024 Jan; 49(2):363-366. PubMed ID: 38194569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.