These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33931456)

  • 1. Toward a more sustainable mining future with electrokinetic in situ leaching.
    Martens E; Prommer H; Sprocati R; Sun J; Dai X; Crane R; Jamieson J; Tong PO; Rolle M; Fourie A
    Sci Adv; 2021 Apr; 7(18):. PubMed ID: 33931456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The permeability evolution mechanism of ore-bearing strata during acid in-situ leaching of uranium: A case study of Bayanwula uranium mine in Inner Mongolia of China.
    He T; Liu J; Zhao B; Gong H; Feng Z; Liu S
    J Contam Hydrol; 2024 Jul; 265():104390. PubMed ID: 38959822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge.
    Anawar HM
    J Environ Manage; 2015 Aug; 158():111-21. PubMed ID: 25979297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Physical Properties on the Leaching of Potentially Toxic Elements from Antimony Ore Processing Wastes.
    Zhou S; Hursthouse A
    Int J Environ Res Public Health; 2019 Jul; 16(13):. PubMed ID: 31277255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.
    Sun Z; Xie X; Wang P; Hu Y; Cheng H
    Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of Gold from Sulfidic Gold Ore Concentrate and Electronic Waste by
    Kudpeng K; Bohu T; Morris C; Thiravetyan P; Kaksonen AH
    Microorganisms; 2020 Nov; 8(11):. PubMed ID: 33202548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in metal speciation and mobility during electrokinetic treatment of industrial wastes: Implications for remediation and resource recovery.
    Peppicelli C; Cleall P; Sapsford D; Harbottle M
    Sci Total Environ; 2018 May; 624():1488-1503. PubMed ID: 29929259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation.
    Wu A; Yin S; Wang H; Qin W; Qiu G
    Bioresour Technol; 2009 Mar; 100(6):1931-6. PubMed ID: 19036579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on Pb release by several new lixiviants in weathered crust elution-deposited rare earth ore leaching process: Behavior and mechanism.
    Qiao J; Tang J; Xue Q
    Ecotoxicol Environ Saf; 2020 Mar; 190():110138. PubMed ID: 31901809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of metal partitioning and mobility in a sulfidic mine tailing pile under oxic and anoxic conditions.
    Pinto PX; Al-Abed SR; Holder C; Reisman DJ
    J Environ Manage; 2014 Jul; 140():135-44. PubMed ID: 24747936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale experiments for microbiological evaluation of measures for safeguarding sulfidic mine waste.
    Schippers A; Jozsa PG; Kovacs ZM; Jelea M; Sand W
    Waste Manag; 2001; 21(2):139-46. PubMed ID: 11220178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil.
    Henne A; Craw D; Gagen EJ; Southam G
    Sci Total Environ; 2019 Aug; 680():91-104. PubMed ID: 31100671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.
    Jarošíková A; Ettler V; Mihaljevič M; Kříbek B; Mapani B
    J Environ Manage; 2017 Feb; 187():178-186. PubMed ID: 27889660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia.
    Diami SM; Kusin FM; Madzin Z
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):21086-21097. PubMed ID: 27491419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospect of abandoned metal mining sites from a hydrogeochemical perspective.
    Kusin FM; Sulong NA; Affandi FNA; Molahid VLM; Jusop S
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):2678-2695. PubMed ID: 32886310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of Magnafloc10 on the acidic, alkaline, and electrodialytic desorption of metals from mine tailings.
    Pedersen KB; Reinardy HC; Jensen PE; Ottosen LM; Junttila J; Frantzen M
    J Environ Manage; 2018 Oct; 224():130-139. PubMed ID: 30036807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens.
    Edberg F; Kalinowski BE; Holmström SJ; Holm K
    Geobiology; 2010 Sep; 8(4):278-92. PubMed ID: 20456501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of microorganisms on in situ uranium mining.
    Yates MV; Brierley JA; Brierley CL; Follin S
    Appl Environ Microbiol; 1983 Oct; 46(4):779-84. PubMed ID: 16346395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing site (Kirki, Greece).
    Liakopoulos A; Lemière B; Michael K; Crouzet C; Laperche V; Romaidis I; Drougas I; Lassin A
    Waste Manag Res; 2010 Nov; 28(11):996-1009. PubMed ID: 20659969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.