These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33931490)

  • 1.
    Destexhe A
    eNeuro; 2021; 8(2):. PubMed ID: 33931490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Scientific Case for Brain Simulations.
    Einevoll GT; Destexhe A; Diesmann M; Grün S; Jirsa V; de Kamps M; Migliore M; Ness TV; Plesser HE; Schürmann F
    Neuron; 2019 May; 102(4):735-744. PubMed ID: 31121126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GeNN: a code generation framework for accelerated brain simulations.
    Yavuz E; Turner J; Nowotny T
    Sci Rep; 2016 Jan; 6():18854. PubMed ID: 26740369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Computational Costs of Cellular-Level Brain Tissue Simulations Through Analytical Performance Models.
    Cremonesi F; Schürmann F
    Neuroinformatics; 2020 Jun; 18(3):407-428. PubMed ID: 32056104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON.
    Lytton WW; Seidenstein AH; Dura-Bernal S; McDougal RA; Schürmann F; Hines ML
    Neural Comput; 2016 Oct; 28(10):2063-90. PubMed ID: 27557104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing realistic neural simulations with GENESIS.
    Bower JM; Beeman D
    Methods Mol Biol; 2007; 401():103-25. PubMed ID: 18368363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-scale Brain Simulation via Supercomputer: A Case Study on the Cerebellum.
    Yamazaki T; Igarashi J; Yamaura H
    Neuroscience; 2021 May; 462():235-246. PubMed ID: 33482329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metastability and Coherence: Extending the Communication through Coherence Hypothesis Using A Whole-Brain Computational Perspective.
    Deco G; Kringelbach ML
    Trends Neurosci; 2016 Mar; 39(3):125-135. PubMed ID: 26833259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.
    Pecevski D; Buesing L; Maass W
    PLoS Comput Biol; 2011 Dec; 7(12):e1002294. PubMed ID: 22219717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surrogate population models for large-scale neural simulations.
    Tripp BP
    Neural Comput; 2015 Jun; 27(6):1186-222. PubMed ID: 25774544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalability of Large Neural Network Simulations via Activity Tracking With Time Asynchrony and Procedural Connectivity.
    Mascart C; Scarella G; Reynaud-Bouret P; Muzy A
    Neural Comput; 2022 Aug; 34(9):1915-1943. PubMed ID: 35896155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits.
    Gleeson P; Cantarelli M; Marin B; Quintana A; Earnshaw M; Sadeh S; Piasini E; Birgiolas J; Cannon RC; Cayco-Gajic NA; Crook S; Davison AP; Dura-Bernal S; Ecker A; Hines ML; Idili G; Lanore F; Larson SD; Lytton WW; Majumdar A; McDougal RA; Sivagnanam S; Solinas S; Stanislovas R; van Albada SJ; van Geit W; Silver RA
    Neuron; 2019 Aug; 103(3):395-411.e5. PubMed ID: 31201122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On numerical simulations of integrate-and-fire neural networks.
    Hansel D; Mato G; Meunier C; Neltner L
    Neural Comput; 1998 Feb; 10(2):467-83. PubMed ID: 9472491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of neural activity based on fMRI data: a simulation study.
    Hemmelmann D; Leistritz L; Witte H; Galicki M
    J Physiol Paris; 2009 Nov; 103(6):353-60. PubMed ID: 19497366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ising-like dynamics in large-scale functional brain networks.
    Fraiman D; Balenzuela P; Foss J; Chialvo DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061922. PubMed ID: 19658539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning from large-scale neural simulations.
    Serban M
    Prog Brain Res; 2017; 233():129-148. PubMed ID: 28826510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics.
    Ros E; Carrillo R; Ortigosa EM; Barbour B; Agís R
    Neural Comput; 2006 Dec; 18(12):2959-93. PubMed ID: 17052155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite Size Effects in Networks of Coupled Neurons.
    Tsigkri-DeSmedt ND; Vlamos P; Provata A
    Adv Exp Med Biol; 2020; 1194():397-407. PubMed ID: 32468555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics.
    Komarov M; Krishnan G; Chauvette S; Rulkov N; Timofeev I; Bazhenov M
    J Comput Neurosci; 2018 Feb; 44(1):1-24. PubMed ID: 29230640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model of the respiratory network challenged and optimized by data from optogenetic manipulation of glycinergic neurons.
    Oku Y; Hülsmann S
    Neuroscience; 2017 Apr; 347():111-122. PubMed ID: 28215988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.