These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3393157)

  • 21. Exonucleolytic proofreading by a mammalian DNA polymerase.
    Kunkel TA; Mosbaugh DW
    Biochemistry; 1989 Feb; 28(3):988-95. PubMed ID: 2713377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase.
    Fidalgo da Silva E; Reha-Krantz LJ
    Nucleic Acids Res; 2007; 35(16):5452-63. PubMed ID: 17702757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deoxynucleoside [1-thio]triphosphates prevent proofreading during in vitro DNA synthesis.
    Kunkel TA; Eckstein F; Mildvan AS; Koplitz RM; Loeb LA
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6734-8. PubMed ID: 6458818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of DNA replication fidelity for three mutants of DNA polymerase I: Klenow fragment KF(exo+), KF(polA5), and KF(exo-).
    Eger BT; Kuchta RD; Carroll SS; Benkovic PA; Dahlberg ME; Joyce CM; Benkovic SJ
    Biochemistry; 1991 Feb; 30(5):1441-8. PubMed ID: 1991125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the mechanism of preferential incorporation of dAMP at abasic sites in translesional DNA synthesis. Role of proofreading activity of DNA polymerase and thermodynamic characterization of model template-primers containing an abasic site.
    Ide H; Murayama H; Sakamoto S; Makino K; Honda K; Nakamuta H; Sasaki M; Sugimoto N
    Nucleic Acids Res; 1995 Jan; 23(1):123-9. PubMed ID: 7870577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exonucleolytic proofreading during replication of repetitive DNA.
    Kroutil LC; Register K; Bebenek K; Kunkel TA
    Biochemistry; 1996 Jan; 35(3):1046-53. PubMed ID: 8547240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fidelity of mammalian DNA replication and replicative DNA polymerases.
    Thomas DC; Roberts JD; Sabatino RD; Myers TW; Tan CK; Downey KM; So AG; Bambara RA; Kunkel TA
    Biochemistry; 1991 Dec; 30(51):11751-9. PubMed ID: 1751492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Switching between Exonucleolysis and Replication by T7 DNA Polymerase Ensures High Fidelity.
    Hoekstra TP; Depken M; Lin SN; Cabanas-Danés J; Gross P; Dame RT; Peterman EJG; Wuite GJL
    Biophys J; 2017 Feb; 112(4):575-583. PubMed ID: 28256218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different applications of polymerases with and without proofreading activity in single-nucleotide polymorphism analysis.
    Zhang J; Li K; Liao D; Pardinas JR; Chen L; Zhang X
    Lab Invest; 2003 Aug; 83(8):1147-54. PubMed ID: 12920243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A possible mechanism for the dynamics of transition between polymerase and exonuclease sites in a high-fidelity DNA polymerase.
    Xie P
    J Theor Biol; 2009 Aug; 259(3):434-9. PubMed ID: 19389410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [DNA replication fidelity].
    Bebenek A
    Postepy Biochem; 2008; 54(1):43-56. PubMed ID: 18610581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single base extension (SBE) with proofreading polymerases and phosphorothioate primers: improved fidelity in single-substrate assays.
    Di Giusto D; King GC
    Nucleic Acids Res; 2003 Feb; 31(3):e7. PubMed ID: 12560510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading.
    Gaspard P
    Phys Rev E; 2016 Apr; 93():042420. PubMed ID: 27176341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational coupling in DNA polymerase fidelity.
    Johnson KA
    Annu Rev Biochem; 1993; 62():685-713. PubMed ID: 7688945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proofreading dynamics of a processive DNA polymerase.
    Ibarra B; Chemla YR; Plyasunov S; Smith SB; Lázaro JM; Salas M; Bustamante C
    EMBO J; 2009 Sep; 28(18):2794-802. PubMed ID: 19661923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
    Sampoli Benítez BA; Arora K; Balistreri L; Schlick T
    J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A reexamination of the nucleotide incorporation fidelity of DNA polymerases.
    Showalter AK; Tsai MD
    Biochemistry; 2002 Aug; 41(34):10571-6. PubMed ID: 12186540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The kinetic and chemical mechanism of high-fidelity DNA polymerases.
    Johnson KA
    Biochim Biophys Acta; 2010 May; 1804(5):1041-8. PubMed ID: 20079883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.
    Florián J; Goodman MF; Warshel A
    J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computer simulation studies of the fidelity of DNA polymerases.
    Florián J; Goodman MF; Warshel A
    Biopolymers; 2003 Mar; 68(3):286-99. PubMed ID: 12601790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.