These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 33931634)

  • 41. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System.
    Feng C; Yuan J; Wang R; Liu Y; Birchler JA; Han F
    J Genet Genomics; 2016 Jan; 43(1):37-43. PubMed ID: 26842992
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Whole genome analysis for 163 gRNAs in Cas9-edited mice reveals minimal off-target activity.
    Peterson KA; Khalouei S; Hanafi N; Wood JA; Lanza DG; Lintott LG; Willis BJ; Seavitt JR; Braun RE; Dickinson ME; White JK; Lloyd KCK; Heaney JD; Murray SA; Ramani A; Nutter LMJ
    Commun Biol; 2023 Jun; 6(1):626. PubMed ID: 37301944
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.
    Yuen KS; Chan CP; Wong NM; Ho CH; Ho TH; Lei T; Deng W; Tsao SW; Chen H; Kok KH; Jin DY
    J Gen Virol; 2015 Mar; 96(Pt 3):626-636. PubMed ID: 25502645
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Epigenetic Footprints of CRISPR/Cas9-Mediated Genome Editing in Plants.
    Lee JH; Mazarei M; Pfotenhauer AC; Dorrough AB; Poindexter MR; Hewezi T; Lenaghan SC; Graham DE; Stewart CN
    Front Plant Sci; 2019; 10():1720. PubMed ID: 32117329
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].
    Ma XL; Liu YG
    Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent Advances in Genome Editing Using CRISPR/Cas9.
    Ding Y; Li H; Chen LL; Xie K
    Front Plant Sci; 2016; 7():703. PubMed ID: 27252719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New improvements in grapevine genome editing: high efficiency biallelic homozygous knock-out from regenerated plantlets by using an optimized zCas9i.
    Villette J; Lecourieux F; Bastiancig E; Héloir MC; Poinssot B
    Plant Methods; 2024 Mar; 20(1):45. PubMed ID: 38500114
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.
    Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F
    Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Base Editing: The Ever Expanding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Tool Kit for Precise Genome Editing in Plants.
    Monsur MB; Shao G; Lv Y; Ahmad S; Wei X; Hu P; Tang S
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32344599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR Off-Target Analysis Platforms.
    Xu CL; Ruan MZ; Ragi SD; Tsang SH
    Methods Mol Biol; 2023; 2560():279-285. PubMed ID: 36481904
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient CRISPR/Cas9-Mediated Gene Editing in an Interspecific Hybrid Poplar With a Highly Heterozygous Genome.
    Wang J; Wu H; Chen Y; Yin T
    Front Plant Sci; 2020; 11():996. PubMed ID: 32719704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRISPR/Cas9-Mediated Efficient Targeted Mutagenesis in Sesame (
    You J; Li D; Yang L; Dossou SSK; Zhou R; Zhang Y; Wang L
    Front Plant Sci; 2022; 13():935825. PubMed ID: 35898225
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9.
    Zhu J; Song N; Sun S; Yang W; Zhao H; Song W; Lai J
    J Genet Genomics; 2016 Jan; 43(1):25-36. PubMed ID: 26842991
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tracking CRISPR's Footprints.
    Lin L; Luo Y
    Methods Mol Biol; 2019; 1961():13-28. PubMed ID: 30912037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.