These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33931661)

  • 1. The effect of magnetic field on the dynamics of gas bubbles in water electrolysis.
    Li YH; Chen YJ
    Sci Rep; 2021 Apr; 11(1):9346. PubMed ID: 33931661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis.
    Cho KM; Deshmukh PR; Shin WG
    Ultrason Sonochem; 2021 Dec; 80():105796. PubMed ID: 34678597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Enhancement of Electrocatalytic Hydrogen Evolution through Coalescence-Induced Bubble Dynamics.
    Bashkatov A; Park S; Demirkır Ç; Wood JA; Koper MTM; Lohse D; Krug D
    J Am Chem Soc; 2024 Apr; 146(14):10177-10186. PubMed ID: 38538570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic field induced motion behavior of gas bubbles in liquid.
    Wang K; Pei P; Pei Y; Ma Z; Xu H; Chen D
    Sci Rep; 2016 Feb; 6():21068. PubMed ID: 26867515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving electrokinetic microdevice stability by controlling electrolysis bubbles.
    Lee HY; Barber C; Minerick AR
    Electrophoresis; 2014 Jul; 35(12-13):1782-9. PubMed ID: 24648277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubbles in Porous Electrodes for Alkaline Water Electrolysis.
    Wu R; Hu Z; Zhang H; Wang J; Qin C; Zhou Y
    Langmuir; 2024 Jan; 40(1):721-733. PubMed ID: 38147650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrolysis-Driven and Pressure-Controlled Diffusive Growth of Successive Bubbles on Microstructured Surfaces.
    van der Linde P; Moreno Soto Á; Peñas-López P; Rodríguez-Rodríguez J; Lohse D; Gardeniers H; van der Meer D; Fernández Rivas D
    Langmuir; 2017 Nov; 33(45):12873-12886. PubMed ID: 29041778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the electrode size and arrangement in a microbial electrolysis cell.
    Gil-Carrera L; Mehta P; Escapa A; Morán A; García V; Guiot SR; Tartakovsky B
    Bioresour Technol; 2011 Oct; 102(20):9593-8. PubMed ID: 21875792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibuoyancy and Unidirectional Gas Evolution by Janus Electrodes with Asymmetric Wettability.
    Sheng S; Shi B; Wang C; Luo L; Lin X; Li P; Chen F; Shang Z; Meng H; Kuang Y; Lin WF; Sun X
    ACS Appl Mater Interfaces; 2020 May; 12(20):23627-23634. PubMed ID: 32348671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrode arrangement for horizontal electroblotting where gas bubbles are removed by a flow of buffer.
    Lauritzen E
    J Biochem Biophys Methods; 1986 Jan; 12(1-2):113-20. PubMed ID: 3944417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Responsive Flexible Copper Electrode with Switchable Wettability for Electrocatalytic Hydrogen/Oxygen Evolution Reactions and Urea Oxidation Reaction.
    Sun S; Dang J; Pan Q; Zhang C; Liu S
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27357-27368. PubMed ID: 37219023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient nanobubbles in short-time electrolysis.
    Svetovoy VB; Sanders RG; Elwenspoek MC
    J Phys Condens Matter; 2013 May; 25(18):184002. PubMed ID: 23598648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.
    Villano M; Ralo C; Zeppilli M; Aulenta F; Majone M
    Bioelectrochemistry; 2016 Feb; 107():1-6. PubMed ID: 26342333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield.
    Sangtam BT; Park H
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring a highly conductive and super-hydrophilic electrode for biocatalytic performance of microbial electrolysis cells.
    Park SG; Rhee C; Jadhav DA; Eisa T; Al-Mayyahi RB; Shin SG; Abdelkareem MA; Chae KJ
    Sci Total Environ; 2023 Jan; 856(Pt 1):159105. PubMed ID: 36181811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitated OH¯ diffusion via bubble motion and water flow in a novel electrochemical reactor for enhancing homogeneous nucleation of CaCO
    Mao W; Gu Y; Kang W; Yu H
    Water Res; 2023 Aug; 242():120195. PubMed ID: 37302179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate removal by a paired electrolysis on copper and Ti/IrO(2) coupled electrodes - influence of the anode/cathode surface area ratio.
    Reyter D; Bélanger D; Roué L
    Water Res; 2010 Mar; 44(6):1918-26. PubMed ID: 20031186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field.
    Ma X; Xing T; Huang B; Li Q; Yang Y
    Ultrason Sonochem; 2018 Jan; 40(Pt A):480-487. PubMed ID: 28946449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes.
    Liu Y; Yang J; Jiang W; Chen Y; Yang C; Wang T; Li Y
    Chemosphere; 2018 Aug; 205():601-609. PubMed ID: 29715674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of Integrated Electrodes with Transport Highways for Pure-Water-Fed Anion Exchange Membrane Water Electrolysis.
    Wan L; Liu J; Xu Z; Xu Q; Pang M; Wang P; Wang B
    Small; 2022 May; 18(21):e2200380. PubMed ID: 35491509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.